1 Rayleigh-Benard Convection

Chandrasekhar! has carefully studied linear stability of Rayleigh-Benard convection using the
Boussinesq approximation, given in terms of the Rayleigh (Ra) and Prandtl (Pr) numbers as
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along with continuity, V-u=0. Above a certain critical Rayleigh number Ra., the conduction due to
adverse temperature gradient becomes linearly unstable to small perturbations and convection rolls
develop (Fig. 1 top). The table below shows predictions of Ra. at the most unstable wavenumber
k. for Q = [0 : 27w /k.] x [0 : 1] having periodic conditions in z. Dirichlet conditions 7" =1 — y are
specified for temperature on the horizontal boundaries, and three different conditions are considered
for velocity: both walls (Dirichlet-Dirichlet), both stress-free (Neumann-Neumann) and a mix
(Dirichlet-Neumann).

Critical Rayleigh number for 3 types of boundaries
BC || Rap Rass Ra.* k:* | Ray | Ras | Rag
D-D || 1707.75 | 1707.74 | 1707.76 || 3.117 | 1760 | 1740 | 1725
D-N || 1100.71 | 1100.64 | 1100.65 || 2.682 | 1144 | 1122 | 1111
N-N || 657.639 | 657.566 | 657.511 || 2.2214 | 690 | 680 | 670

According to dynamical systems theory, the saturation amplitude (U) and kinetic energy (Ej)
grow, respectively, as y/€ and ¢, for € := (Ra — Ra.)/Ra. < 1. Thus Ra. can be determined from a
linear fit of (volume-averaged steady state) Ej, versus Ra for two or more values of Ra as shown in
Fig. 1 (left). In the table above, the estimates Rajs and Rags are determined from solution pairs
at (Ray, Raz) and (Rag, Ras), respectively. For each case, Fj is computed in a single unsteady run
(Fig. 1 right) by varying Ra after time marching to a steady state such that |dE}/dt| < o x Ey, with
o = 107%. Larger o or lower polynomial orders N < 7 lead to a drop in accuracy for the estimates
of Ra,. Iteration tolerances were controlled by setting TOLREL = 107°. Larger values (10~3) did
not yield a clear initial linear stage with exponential growth but the Ra. estimate was not affected.
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Figure 1: Rayleigh-Benard convection with walls: (top) streamlines for £=9 elements and N=T;

(left) kinetic energy for E=3 and N=T7 versus Rayleigh number and (right) time.
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Rayleigh-B
enard Exercise

Consider the Rayleigh-B
enard (RB) problem of Section ?? for varying Prandtl numbers, Pr := v/«a. The flow is gov-
which

erned by the Navier-Stokes and energy equations, du
Y &y eq T gthu Vu=—VptrV2ut ST L 4w vT=—Vp+av2T,(0)

are coupled through the Boussinesq term 7. The domain is the rectangular box € = [0, Lg] % [0, 1]
with periodic boundary conditions in x and homogeneous Dirichlet conditions u = 0 at y=0 and 1.
Thermal boundary conditions are T=1 at y=0 and T=0 at y=1. Under sufficiently strong loading
conditions, 5 > 1.

Explore Ra. in the large- and small-Pr limits by varying Pr



