

IDENTIFYING ACTIVE VARIABLES TO IMPROVE THE PERFORMANCE OF OPERATOR OVERLOADING AUTOMATIC DIFFERENTIATION*

by

Drew Wicke**
York College of Pennsylvania
Mathematics and Computer Science Division
Argonne National Laboratory

*Work performed at Argonne National Laboratory, a contract Laboratory of the United States Department of Energy

**Participant in the Summer 2011 Student Program. This program is coordinated by the Division of Education Programs.
Identifying Active Variables to Improve the Performance of Operator Overloading Automatic Differentiation.
Drew Wicke (York College of Pennsylvania, York, PA 17403), Paul Hovland (Argonne National Laboratory, Argonne, IL 60439)
Automatic differentiation (AD) is a means of computing the derivative of a function within a computer program. AD is used in a wide variety of applications from artificial intelligence to weather modeling. AD is favored over symbolic or numerical differentiation because of its ability to maintain a high level of accuracy in the derivative. AD tools compute the derivative using source-to-source transformation or operator overloading. The source-to-source method transforms the input code to produce an output that computes the derivative. Rather than producing new code, the operator overloading method utilizes features of the programming language to alter the meaning of mathematical operators in order to compute the derivative. This method allows for maintainable code; however, speed of computation is sacrificed. One way to increase the speed is to perform derivative computation for only active variables. Active variables depend on the value of an input variable and are used in the computation of an output variable and therefore are necessary for the calculation of the derivative. All other variables are considered inactive and are not needed for the derivative calculation. Activity analysis is a technique used to identify active variables in the input source code. The goal of this research was to use activity analysis to improve the performance of the calculation of derivatives using Sacado -- an implementation in C++ of the operator overloading method of AD. The tool created to accomplish this combines the activity analysis of the source code analysis toolkit, OpenAnalysis, with the source-to-source transformation tool ROSE. The tool creates an abstract syntax tree (AST) of the code using ROSE. An AST is a simplified anatomy of a program represented as a tree of connected nodes. The AST is converted to an intermediary form for OpenAnalysis to identify active variables. The tool changes the types of active variables identified by OpenAnalysis to Sacado derivative types. It can also be adapted for any operator overloading AD implementation. It was tested to ensure proper identification of all active variables by creating test cases that used C and C++ constructs. The tool is completed and works in many cases. As a result, this tool can replace the manual process, which is slow and overestimates the number active variables. The expected impact of the tool on the scientific community is to produce efficient code for scientific applications.

