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Abstract

Client-side file caching is one of many I/O strategies
adopted by today’s parallel file systems that were initially
designed for distributed systems. Most of these implemen-
tations treat each client independently because clients’
computations are seldom related to each other in a distrib-
uted environment. However, it is misguided to apply the
same assumption directly to high-performance computers
where many parallel I/O operations come from a group of
processes working within the same parallel application.
Thus, file caching could perform more effectively if the
scope of processes sharing the same file is known. In this
paper, we propose a client-side file caching system for MPI
applications that perform parallel I/O operations on shared
files. In our design, an I/O thread is created and runs con-
currently with the main thread in each MPI process. The
MPI processes that collectively open a shared file use the
I/O threads to cooperate with each other to handle file
requests, cache page access, and coherence control. By
bringing the caching subsystem closer to the applications
as a user space library, it can be incorporated into an MPI
I/O implementation to increase its portability. Performance
evaluations using three I/O benchmarks demonstrate a
significant improvement over traditional methods that use
either byte-range file locking or rely on coherent I/O pro-
vided by the file system.

Key words: client-side file caching, parallel I/O, MPI I/O,
cache coherence, I/O thread

1 Introduction

In today’s high-performance computers, file systems are
often configured in a client–server model. There are usu-
ally far fewer I/O servers than application nodes since
system design targets primarily computationally inten-
sive applications. In such a scenario, potential communi-
cation bottlenecks can form at the server nodes when
large groups of compute nodes make file requests simul-
taneously. Therefore, reducing the amount of data trans-
fer between clients and servers becomes an important issue
for parallel file system design. As demonstrated by dis-
tributed file systems, client-side file caching is often con-
sidered a technique that allows scaling and is adopted in
many modern parallel file systems.

File caching places a replica of repeatedly accessed
data in the memory of the requesting processors such that
successive requests to the same data can be carried out
locally without going to the file servers. However, stor-
ing multiple copies of the same data at different clients
introduces the cache coherence problem (Tanenbaum and
van Steen 2002). Existing system-level solutions often
involve the bookkeeping of cache status data at the I/O
servers and require that I/O requests first consult the serv-
ers for safety to proceed. Such coherence control mecha-
nisms require file locking in each read/write request to
ensure atomic access to the cache data. Since file locking
is usually implemented in a centralized manner, it can
easily limit the degree of I/O parallelism for concurrent
file operations.

We propose a cooperative client-side file caching scheme
for MPI applications that access shared files in parallel.
The motivation comes from the inappropriate assumption
within traditional client-side caching designs that consid-
ers each I/O request independently without correlation
between the requesting clients. While such an assumption
may be suitable for distributed file systems, it can aggra-
vate the cache coherence problem for parallel applications
that work on the same data structures and perform concur-
rent I/O to shared files. Cooperative caching instead coor-
dinates the MPI processes that open the same file collectively
to perform file caching and coherence control. The design
consists of the following five components: 1) cache meta-
data describing the caching status of the file; 2) a global
cache pool comprising local memory from all MPI proc-
esses; 3) I/O threads running concurrently with the main
program in each MPI process; 4) a distributed locking
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145COOPERATIVE CLIENT-SIDE FILE CACHING

mechanism; and 5) caching/eviction policies. In our cur-
rent implementation, the caching system is built as a user-
level library that can be linked by MPI applications. We
plan to incorporate it into an MPI I/O implementation in
the future. Experimental results presented in this paper
were obtained from the IBM SP at San Diego supercom-
puting center using its GPFS file system. Three sets of I/O
benchmarks were used: a sliding-window I/O pattern, BTIO,
and FLASH I/O. Compared with the traditional approaches
that use either byte-range file locking to enforce the cache
coherence or simply native UNIX read/write calls, coop-
erative caching proves to be a significant performance
enhancement.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 describes the design and
implementation of the cooperative caching. The perform-
ance results are presented in Section 4 and the paper is
concluded in Section 5.

2 Related Work

Many parallel file systems such as GPFS (Schmuck and
Haskin 2002), Lustre (Cluster File Systems 2003), and Pan-
asas (Nagle, Serenyi, and Matthews 2004) support client-
side caching. However, targeting different I/O patterns,
parallel file systems adopt different coherence control
strategies. GPFS employs a distributed lock protocol to
enforce coherent client-side cache data. Lock tokens must
be granted before any I/O operation can be performed on
the cache data (Prost et al. 2000; 2001). To avoid central-
ized lock management, a token holder becomes a local
lock manager responsible for granting locks for any fur-
ther requests to its particular byte ranges. IBM’s MPI I/O
implementation for GPFS adopts a strategy called data
shipping that binds each GPFS file block to a unique I/O
agent responsible for all the accesses to this block. The
file block assignment is done in a round-robin striping
scheme. I/O operations must go through the I/O agents
which ship the requested data to the appropriate proc-
esses. I/O agents are threads residing in each MPI proc-
ess and are responsible for combining I/O requests in
collective operations. In the background, I/O threads also
assist in advanced caching techniques such as read ahead
and write behind.

The Lustre file system uses a slightly different distrib-
uted locking protocol where each I/O server manages
locks for the stripes of file data it owns. If a client requests
a lock held by another client, a message is sent to the lock
holder asking for release of the lock. Before a lock can be
released, dirty cached data must be flushed to the servers.
The Panasas file system also employs metadata servers to
maintain client-side cache coherence through using call-
backs. A client’s read or write request is first registered
with the servers with a callback. If conflicting cache data

access occurs, all clients that have callbacks are con-
tacted and the appropriate write-back or cache invalidation
is performed. In this scheme, data is transferred between
the servers each time coherence control is applied. Some
parallel file systems do not even support client-side file
caching at all, for instance PVFS (Carns et al. 2000).

Cooperative caching is proposed by Dahlin et al.
(1994) to provide coherence by coordinating clients’ caches
and allowing requests not satisfied by a client’s local
cache to be satisfied by the cache of another client. Sys-
tems that use cooperative caching are PGMS (Voelker
et al. 1998), PPFS (Huber et al. 1995), and PACA (Corts,
Girona, and Labarta 1996). The Clusterfile (Isaila et al.
2004) parallel file system integrates cooperative caching
into MPI collective I/O operations by using cache man-
agers to manage a global cache consisting of memory
buffers on both clients and servers. However, cooperative
caching in general requires changes in the file system at
both client and server. In contrast, the caching scheme
proposed in this work is implemented in user space and
requires no change to the underlying file system.

2.1 MPI I/O

The Message Passing Interface (MPI) standard (MPI Forum
1995) defines an application programming interface for
developing parallel programs that explicitly use message
passing to perform inter-process communication. MPI
version 2 (MPI Forum 1997) extends the interface to
include, among other things, file I/O operations. MPI I/O
inherits two important MPI features: the ability to define
a set of processes for group operations using an MPI com-
municator and the ability to describe complex memory
layouts using MPI derived data types. A communicator
specifies the processes that participate in an MPI opera-
tion, whether for inter-process communication or I/O
requests to a shared file. For file operations, an MPI com-
municator is required when opening a file in parallel to
indicate the processes that will later access the file. In
general, there are two types of MPI I/O data access oper-
ations, collective I/O and independent (non-collective)
I/O. Collective operations require all the processes that
opened the file to participate. Thanks to the explicit syn-
chronization, many collective I/O implementations take
this opportunity to exchange access information among
all the processes to generate a better overall I/O strategy.
An example of this is the two-phase I/O technique pro-
posed by del Rosario, Brodawekar, and Choudhary
(1993). In contrast, independent I/O does not require syn-
chronization, making any cooperative optimizations very
difficult.

Active buffering proposed by Ma et al. (2003) is con-
sidered an optimization for MPI collective write opera-
tions. It accumulates write data in a local buffer and uses
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146 COMPUTING APPLICATIONS

an I/O thread to perform write requests in the background.
I/O threads can dynamically adjust the size of local buff-
ers based on available memory space. For each write
request, the main thread allocates a buffer, copies the
data over, and appends this buffer to a queue. The back-
ground I/O thread later retrieves the buffers from the
head of the queue, writes the buffered data to the file sys-
tem, and then releases the buffer space. Although write
behind enhances performance, active buffering is appli-
cable only if the I/O patterns consist only of collective
writes. Because of the lack of consistency control, active
buffering cannot handle the mixed read and write opera-
tions or mixed independent and collective I/O calls.

3 Design and Implementation

The idea behind our cooperative caching is moving the
caching system that is traditionally embedded in the
operating system up to the user space and letting applica-
tion processes cooperate with each other to manage a
coherence. One of the immediate benefits is relieving I/O
servers of the cache coherence control burden. Once data
reaches the clients, client processes put forth the effort to
keep the cached data coherent. As a result, I/O servers
are solely responsible for transferring data to and from

the clients, and no longer need to enforce cache coher-
ence. Designed for MPI applications, our caching system
uses the MPI communicator supplied in the file open call
to identify the scope of processes that will later cooperate
with each other to perform file caching. We now describe
the building blocks of the caching system: management
for cache metadata and cache pages, the I/O thread mech-
anism, distributed locking layer, and caching policies.

3.1 Cache Metadata and Cache Pages

In our implementation, a file is logically divided into pages
of equal size where each page represents an indivisible
unit that can be cached in a process’ local memory.
Describing the cache status of these file pages, cache
metadata is distributed in a round-robin fashion among
the processes in the MPI communicator that opened the
file. Thus, metadata for page i resides on the process with
rank (i mod nproc), where nproc is the number of processes
in the MPI communicator. Figure 1 depicts an example
distribution of cache metadata and cache pages for a file
opened by four MPI processes. Note that the location of
cache metadata is fixed (cyclically assigned among proc-
esses) but file pages can be cached at any process. Cache
metadata includes the page owner, MPI rank of the cur-

Fig. 1 An example of cache metadata distribution in the cooperative caching among four processes. A file is logically
divided into equal-sized pages. The cache status of the logical pages is distributed in a round-robin fashion. The local
cache pages are a collection of memory buffers used for caching. If cached, the contents of an entire logical file page
are stored in a local file page. All local cache pages are of the same size as the logically partitioned file page.
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147COOPERATIVE CLIENT-SIDE FILE CACHING

rent location, locking mode (locked/unlocked), and the
page’s recent access history. For each page cached locally,
we use a high water mark to indicate the dirty data in the
page.

The cache granularity is a file page size. Our current
implementation pre-allocates a fixed size of memory for
each process to store the cache pages. These memory
spaces from all the involved MPI processes can be viewed
as a global cache pool. Accessing a cache page in the glo-
bal pool can only be done through either local memory
copy or explicit MPI communication. Note that the cache
pool is shared by all the opened files, but cache metadata
is created uniquely for each file. An I/O request must first
check the status of each of its pages prior to accessing the
pages or the file region corresponding to the pages.

3.2 I/O Thread

Since cache pages and metadata are distributed among
processes, each process must be able to respond to remote
requests to access data stored locally. Because collective
I/O is inherently synchronous, remote queries can be ful-
filled easily with inter-process communication. The fact
that independent I/O is asynchronous makes it difficult for
any one process to explicitly handle arbitrary remote
requests. Hence, we choose an approach that creates an
I/O thread to run concurrently with the main program
thread. To improve the portability, our implementation
uses the POSIX thread library (IEEE 1996). Figure 2
illustrates the I/O thread design within an MPI process.
Details of the I/O thread design are described as follows.

• Each process can have multiple files opened, but only
one thread is created. The I/O thread is created when
the process opens the first file and destroyed when the
last file is closed.

• Once the I/O thread is created, it enters an infinite loop
to serve both local and remote I/O requests until it is
signaled by the main thread for its termination.

• All I/O and communication operations related to cach-
ing are carried out by the I/O thread only. For blocking
I/O operations, the main thread signals the I/O thread
and waits for the I/O thread to complete the request.
For non-blocking I/O, the main thread can continue its
task, but must explicitly call a wait function to ensure
the completion of the request. This design conforms to
the MPI blocking and non-blocking I/O semantics.

• A shared conditional variable protected by a mutual
exclusion lock is used to indicate if an I/O request has
been issued by the main thread or if the I/O thread has
completed the request. The communication between
the two threads is done through a few shared variables
depicting file access information such as the file han-
dler, offset, memory buffer, etc.

• To serve remote requests, the I/O thread probes for
incoming I/O requests from all processes in the MPI
communicator group. Since each opened file is associ-
ated with a communicator, the probe will scan all the
opened files.

• The types of local requests are: file open, close, read,
write, flush, and thread termination.

• The remote I/O requests include cache page data trans-
fers, and read/write, lock/unlock metadata.

3.3 Distributed Locking Layer

Since cache metadata may be modified at any time, a dis-
tributed locking mechanism is implemented to ensure
access is atomic. Each MPI process acts as a lock man-
ager for its assigned metadata with lock granularity
matching the file page size to simplify the implementa-
tion. This design concept is similar to the distributed
locking protocol used in existing parallel file systems,
such as Lustre. Locks only apply to metadata, so locks
must be granted to the requesting process before it can
read/write the metadata. If the requested metadata is cur-
rently locked, the request will be added to a queue and
the requesting process must wait for the lock to be
granted. Once the metadata locks are granted, the MPI
process is free to access the metadata, cache pages, and
the file range corresponding to the pages.

Fig. 2 I/O thread’s interactions with the main thread
and remote requests from a single MPI process’ point
of view.
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Our implementation follows the POSIX semantics on I/O
atomicity. POSIX atomicity requires that all bytes written
by a single write call are either completely visible or com-
pletely invisible to any read call (IEEE 1996; 2001). Sim-
ilar to POSIX, MPI I/O consistency is required for each
individual MPI read/write call. However, unlike the
POSIX read/write functions that each can only access to a
contiguous file region, a single MPI read/write can simul-
taneously access to multiple non-contiguous regions. In
an MPI I/O implementation, each of these non-contiguous
regions must be carried out by a single read/write call,
unless the underlying file systems support accessing mul-
tiple non-contiguous regions in a single call. Therefore,
atomicity for a single contiguous access is important for
an MPI I/O implementation to enforce the I/O consist-
ency. In cooperative caching, cache pages in consecutive
file space can be stored at different MPI processes, so I/O
atomicity must be guaranteed for a single POSIX read or
write whose request spans multiple pages. To achieve this
end, locks are required for all read and write calls. In other
words, a read or write calls consist of getting locks,
accessing cache pages, and releasing locks. Since all locks
must be granted prior to accessing the cache pages, dead-
lock may occur when more than two processes concur-
rently request locks to the same two pages. To avoid
deadlock, we employ the two-phase locking strategy pro-

posed by Bernstein, Hadzilacos, and Goodman (1987).
Under this strategy, lock requests are issued in strict
ascending order on page IDs and a page lock must be
obtained before issuing the next lock request. For exam-
ple, if a read or write call covers the file pages from i to j,
where i ≤ j, the lock request for page k, i ≤ k ≤ j, will not
be issued until the lock for page (k – 1) is granted.

3.4 Caching Policies

To simplify coherence control, at most one copy of file
data can be cached. The operations for a read request are
described in Figure 3(a). When a process makes an I/O
call, its main thread first sets the access information in
the shared variables and signals the I/O thread. Once sig-
naled, the I/O thread uses the current file pointer position
and the request length to identify the file page range. For
each file page, the I/O thread sends a lock request to the
process that holds the metadata. The lock to the metadata
must be granted before any read/write can proceed on the
file range corresponding to the page. The locks are only
applicable to the metadata rather than the cache pages. If
the requested pages have not been cached by any process,
the requesting process will cache them locally by reading
them from the file system. Otherwise, the requests are
forwarded to the owner(s) of the cache pages.

Fig. 3 (a) The operations for a read request to file page k. (b) Example of the I/O flow where MPI process P1 reads
data from logical file page 7.

 at ARGONNE NATIONAL LAB LIB on February 19, 2009 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


149COOPERATIVE CLIENT-SIDE FILE CACHING

The I/O flow of a read operation is illustrated in Fig-
ure 3(b) with four MPI processes. In this example, proc-
ess P1 reads data in file page 7. The first step is to lock
and retrieve the metadata of page 7 from P3 (7 mod 4 = 3).
If the page is not cached yet, P1 will cache it locally into
local page 3 by reading from the file system, as depicted
by steps (3) and (4) in Figure 3(a). If the metadata indi-
cates that the page is currently cached on P2, then an MPI
message is sent from P1 to P2 asking for data transfer. In
step (10), assuming file page 7 is cached in local page 2,
P2 sends the requested data to P1. In our implementation,
data transfer between two I/O threads on different MPI
processes is through MPI asynchronous communication.
We have also been investigating an alternative design
based on the MPI remote memory access functions. For
this work, the reader is referred to Coloma et al. (2005).

In our implementation, cache data is flushed under any
of three conditions: under memory pressure, at file close,
and the explicit file flush function. Page eviction is initiated
when the pre-allocated memory space is full. The eviction
policy is solely based on local references and a least-recent-
used policy. If the requested file pages have not yet been
cached and the request amount is larger than the pre-allo-
cated memory space, the read/write calls will go directly
to the file system. The high water mark of a cache page is
used to flush only the dirty data so that an entire page does
not always have to be flushed. In addition, cache pages are
examined and coalesced if possible to reduce the number
of write calls. For file systems that do not provide consist-
ency automatically, such as NFS, we use the approach in
ROMIO that wraps the byte-range file locks around each
read and write call to bypass the potentially incoherent file
system cache (Thakur, Gropp, and Lusk 1999).

4 Experimental Results

The performance evaluation was done on the IBM SP
machine at San Diego Supercomputing Center. The IBM
SP contains 144 Symmetric Multiprocessing (SMP) com-
pute nodes where each node is an eight-processor shared-
memory machine. We use the IBM GPFS file system to
store the files. The peak performance of the GPFS is 2.1
GB per second for reads and 1 GB per second for writes.
I/O bandwidth peaks at 20 compute nodes. The default file
system block size on the GPFS is 256 KB and is also used
as the cache page size in the cooperative cache. We present
results of three benchmarks: a sliding-window access
pattern, NASA’s BTIO benchmark, and the FLASH I/O
benchmark.

4.1 Sliding-Window Benchmark

To simulate a repeated file access pattern that potentially
causes incoherent caching, we constructed the sliding-

window I/O pattern depicted in Figure 4(a). The inner
loop j is the core of sliding-window operation and the outer
loop i indicates the number of file segments. In each inner
loop, a read-modify-write operation on two file pages is
performed by each process. A different file segment is
accessed as the outer loop is incremented. In the sliding-
window access pattern, every process is able to read and
write the data modified by all other processes. We com-
pare this with byte-range file locking. This comparison is
made under the assumption that cache coherence must be
enforced, so a byte-range lock wraps each read and write
call sliding-window test code. The performance results
are presented in Figure 4(b). File sizes used in our tests
range from 32 MB to 1 GB. Bandwidth is obtained by
dividing the aggregate I/O amount by the execution time
measured from file open to close.

The experimental results clearly show much better
performance for cooperative caching. Particularly good
speedups are observed in the case of 32 compute nodes.
Given the nature of repeated data access in the sliding-
window pattern, our caching avoids most of the I/O to the
underlying file system by keeping data in memory of the
MPI processes. In contrast, the byte-range file locking
approach in this case suffers from serious lock contention
in the common file regions among as many as 32 proc-
esses. In addition, the overhead of using the byte-range
locking approach also includes the communication costs
for transferring data to or from the servers each time an I/
O operation is performed since the system caching is
essentially disabled. In principle, I/O should perform bet-
ter if clients transfer the data from each other’s memory
with less contention than directly from the file servers.
Reducing the involvement of the file servers significantly
improves the I/O performance, especially with a large
number of processes.

4.2 BTIO Benchmark

Developed by the NASA Advanced Supercomputing (NAS)
Division, the BTIO benchmark is one component of the
NAS Parallel Benchmark suite (NPB-MPI) version 2.4
(Wong and der Wijngaart 2003). BTIO presents a block-
tridiagonal partitioning pattern on a three-dimensional
array across a square number of compute nodes. Each
processor is responsible for multiple Cartesian subsets of
the entire data set, whose number increases as the square
root of the number of processors participating in the com-
putation. Figure 5(a) illustrates the BTIO partitioning pat-
tern with nine processes. BTIO provides options for four I/
O methods: MPI collective I/O, MPI independent I/O,
Fortran I/O, and separate-file I/O. In this paper, we only
present the performance results for MPI collective I/O,
since collective I/O results in the best performance
(Fineberg et al. 1996). There are 40 consecutive collec-
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tive MPI writes and each appends an entire array to the
previous write in a shared file. The writes are followed by
40 collective reads to verify the newly written data. We
evaluate the A and B classes which generate 800 MB and
3.24 GB of I/O, respectively. Figure 5(b) compares the
bandwidth results between cooperative caching and the
native approach (without caching and with byte-range
locking). In most cases, cooperative caching out-performs
the native approach. Cooperative caching can achieve
bandwidths near the system peak performance, especially
when the number of compute nodes becomes large.

4.3 FLASH I/O Benchmark

The FLASH I/O benchmark suite (Zingale 2001) is the
I/O kernel of the FLASH application, a block-structured
adaptive mesh hydrodynamics code that solves fully com-
pressible, reactive hydrodynamics equations developed
mainly for the study of nuclear flashes on neutron stars
and white dwarfs (Fryxell et al. 2000). The computational
domain is divided into blocks which are distributed across
the MPI processes. A block is a three-dimensional array
with an additional 4 elements as guard cells in each dimen-

Fig. 4 (a) The sliding-window access patterns. (b) I/O bandwidth for running the sliding-window access pattern.
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sion on both sides to hold information from the neighbors.
In this work, we used two block sizes of 8 × 8 × 8 and
16 × 16 × 16. There are 24 variables per array element,
and about 80 blocks on each MPI process. A variation of
block numbers per MPI process is used to generate a
slightly unbalanced I/O load. Since the number of blocks
is fixed in each process, increasing the number of MPI
processes linearly increases the aggregate I/O amount.
FLASH I/O produces a checkpoint file and two visualiza-
tion files containing center and corner data. The largest
file is the checkpoint file and its I/O dominates the entire
benchmark. The I/O is done through HDF5 (HDF Group
2005) which stores data along with its metadata in the
same files. HDF5’s parallel I/O implementation is built on

top of MPI I/O. To eliminate the overhead of memory
copying in the HDF5 hyper-slab selection, FLASH I/O
extracts the interiors of the blocks via a direct memory
copy into a buffer before passing it to HDF5 routines.
There are 24 I/O loops, one for each of the 24 variables. In
each loop, every MPI process writes into a contiguous file
space, appending its data to the previous ranked MPI
process.

Figure 6 compares the bandwidth results between the
I/O implementation with and without cooperative cach-
ing. The I/O amount is proportional to the number of
compute nodes, ranging from 36 MB to 586 MB for 8 ×
8 × 8 arrays and from 286 MB to 4.60 GB for 16 × 16 ×
16 arrays. In the 8 × 8 × 8 array size case, we can see that

Fig. 5 (a) BTIO data partitioning pattern. The 4D subarray in each process is mapped to the global array in a block-
tridiagonal fashion. This example uses 9 processes and highlights the mapping for process P6. (b) I/O bandwidth
results for BTIO benchmark.
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the I/O bandwidth for both implementations is far below
the system peak performance. This is because the bench-
mark uses small I/O amounts and peak performance can
really only be achieved with large contiguous I/O requests.
Bandwidth improves significantly when the array size
increases to 16 × 16 × 16. Without repeating I/O patterns,
the I/O performance improvement is the benefit of write
behind provided by the cooperative cache.

4.4 Performance Implication

In general, client-side file caching enhances I/O perform-
ance for I/O patterns with repeated accesses to the same
file regions, and patterns with a large number of small
requests. In the former case, caching reduces client–server
communication costs. This is exhibited in both the slid-
ing-window and BTIO benchmarks. In the latter, caching
accumulates multiple small requests into large requests
for better network utilization, also known as write behind
and read ahead. Running forty consecutive write opera-
tions in the BTIO benchmark indicates that the write
behind strategy is beneficial. Similarly, the FLASH I/O
benchmark contains only write operations, so write behind
is attributed for the performance improvement of the
cooperative cache.

Cooperative caching bears several sources of overhead
including memory copies between I/O buffers and cache
pages, distributed lock management, and communication
for accessing remote cache pages. For environments with
a relatively slow communication network, such over-
heads can become significant. Therefore, the perform-
ance of cooperative caching may be machine dependent.
A parameter that can significantly affect the performance
of cooperative caching is the logical file page size. The
granularity of the file page size determines the number of
local and remote accesses generated by an I/O request.
For different file access patterns, a single file page size

may not always deliver the same degree of performance
improvement. If the I/O pattern consists of frequent and
small accesses, a large file page size can increase conten-
tion for the same pages. However, if a small file page
size is used when the accesses are less frequent and with
large I/O amounts, a single large request can cover multi-
ple pages and result in many remote data accesses. In
some cases, the appropriate page size can only be fine-
tuned by the application users.

5 Conclusions

In general, the performance evaluation of a caching system
is different from measuring the maximum data rate for a
file system. Typical file system benchmarks avoid cach-
ing effects by using an I/O amount larger than the aggre-
gate memory size of either clients or servers. File caching
can only be beneficial when there is sufficient unused mem-
ory space for the caching system to operate in. Therefore,
we use the medium array sizes for the three benchmarks
in our experiments such that the I/O amount does not
overwhelm the memory of the compute nodes. In this
paper, we propose cooperative caching as a new user-
level client-side file cache design for MPI applications.
By moving the caching system closer to the applications,
the cache system is aware of the processes that will later
access the shared file. We have demonstrated significant
improvement over traditional approaches that use either
byte-range file locking or system default I/O. In the
future, we plan to investigate the effects of file page size
and explore possible I/O modes that can further help
caches deal with a variety of access patterns. Our current
implementation for the I/O thread that uses an infinite
loop of calling MPI_Iprobe() to detect remote requests.
Although this design enables the I/O thread to work on a
request as soon as it arrives, it can also waste computa-
tional resource when low frequent remote requests are

Fig. 6 I/O bandwidth results for FLASH I/O benchmark.
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presented. In the future, we will investigate an alternative
design to replace the non-blocking probe with a blocking
function such that the I/O thread is only activated when
remote requests arrive.
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