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Summary	
  
 
ParVis is a project funded under LAB 10-05: “Earth System Modeling:  Advanced 
Scientific Visualization of Ultra-Large Climate Data Sets”. Argonne is the lead lab with 
partners at PNNL, SNL, NCAR and UC-Davis.   
 
This report covers progress from October 1st, 2011 through Dec 21st, 2012.   
 
A primary focus of ParVis is introducing parallelism to climate model analysis to greatly 
reduce the time-to-visualization for ultra-large climate data sets.  For this report, it is 
convenient to summarize the work as two tracks with different time horizons:  one track 
is to provide immediate help to climate scientists already struggling to apply their 
analysis to existing large data sets.  The other track focused on building a new data-
parallel library and tool for climate analysis and visualization that will give the field a 
platform for performing analysis and visualization on ultra-large datasets for the 
foreseeable future. 
 
We made good progress on our second-year milestones and completed our 2nd-year 
deliverable: task parallel (with Swift) versions of other CESM diagnostic packages.  We 
completed the ocean and sea-ice model working group packages to add to the 
atmosphere model working group package from the first year. 
 
We also made a beta release of our ParNCL application to the community. 

Progress	
  on	
  short-­‐term	
  improvements	
  

Swift-­‐based	
  climate	
  model	
  diagnostics	
  
 
Swift is a system for the rapid and reliable specification, execution, and management 
of large-scale science and engineering workflows. It supports applications that execute 
many tasks coupled by disk-resident datasets - as is common, for example, when 
analyzing large quantities of data or performing parameter studies or ensemble 
simulations.  The diagnostic plots made by c-shell scripts developed by CESM working 
groups can straightforwardly be recast as many-task parallel applications. The diagnostic 
scripts use a combination of NCO utilities (ncra, etc.) to perform data reduction and NCL 
to make additional calculations and plots. Plots from these scripts are used extensively by 
scientists evaluating climate model integrations. 
 
The introduction of task parallelism to diagnostic workflows has been very successful and 
provided immediate speed increases. 
 
A task parallel version of the Atmospheric Model Working Group diagnostics was 
completed in our first year and released on the ParVis home page.  The Swift version was 
merged with the main development and released in version 5.3 of the AMWG diagnostics 
on January 31, 2012. 



  
 
Since the release of our version of the Atmospheric Model Working Group diagnostics 
last year, we have updated the package to re-grid SE files to FV.  This was needed to plot 
the results with NCL.  We also were able to create a branch version that replaces the 
NCO calls with Pagoda.  Pagoda, developed as part of the Colorado State University 
Global Cloud Resolving Model project, provides parallel versions (using Global Arrays) 
of the NCO utilities.  This introduced a layer of data-parallelism to the already task-
parallel version of the AMWG diagnostics package.  We were able to run this version 
with 5 years of ¼ degree SE data that was upsampled to 1/10th degree FV grid.  Each of 
the monthly history files were 24GB.  The results are shown in Figure 1.  The Swift-only 
version was able to compute the climate averages 4X faster.  Running with pagoda 
instead on NCO, the Swift/pagoda version was able to run in less than 1 hour and cut the 
Swift-only time by about half.  The original serial version took almost 9 ½ hours to 
compute the same files. 

 
Figure 1:  Swift speedups for high-resolution atmosphere data using Swift and Pagoda 
 
Since the last report we’ve also released an NCL and Swift version of the Ocean Model 
Working Group (OMWG) diagnostic package.  The original version of the package used 
IDL to create the plots.  To achieve more portability, the NCAR NCL team rewrote the 
original IDL scripts in NCL.  We also re-wrote the top level c-shell scripts in Swift to 
compute the climate average files, create the NCL plots, and convert the images files in 
parallel.  The results are shown in Figures 2-4.  The OMWG diagnostic package contains 
three separate scripts.  The first script compares model data to observational data (Figure 
2).  The second compares two model runs against each other (Figure 3).  The final script 
computes a time series (Figure 4). 
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Figure 2: Timings for the OWMG diagnostic package popdiag script 
 
All of the timings were run using the same 10 year 1 degree history files.  The popdiag 
script compared the 10 years against observational data.  The popdiag script compared 
the first 5 years against the later 5 years.  The popdiagts script  

 
Figure 3: Timings for the OWMG diagnostic package popdiagdiff script 
 

 
Figure 4: The OMWG diagnostic package popdiagts script 
 
created a time series for the full 10 years of data.  The popdiag and popdiagdiff scripts 
each saw about a 3x speedup computing the climate average files and saw a very large 
improvement in the time it took to create the plots using NCL.  The popdiagts script saw 
an even greater improvement in computing the climate files because there were more 
tasks that were able to be computed in parallel.  There wasn’t as big of an improvement 
seen with the NCL plots because there aren’t as many scripts available for task 



parallelism.   This version was released to the community through the OMWG in June, 
2012. 
 
Since this first release of the ocean model diagnostics, we’ve released a second version 
that allows users to run with hi-resolution data (1/10th degree).  We tested this second 
version comparing 1 year of 1/10th degree data against observations.  The results are 
shown in Figure 5.  The original version took about 6 ¾ hours to run.  The Swift version 
was able to reduce this time to about 1 ½ hours. 
 

 
Figure 5: The OMWG diagnostic package ran with hi-resolution data 
 
We have also complete work on re-writing the Ice Model Diagnostic Package in Swift.  
It’s currently available to friendly users and we hope to release it to the community soon.  
Our initial timing results show almost a 4x speedup.  Figure 6 shows the results of 
comparing 2, 20 year 2 degree data sets to each other. 
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Figure 6: The Ice Model Diagnostic Package timings comparing two datasets to each other   
 
We have also started work on the Land Model diagnostic package.  We hope to have this 
completed in the first quarter next year.  After this work is complete, we will focus on 
adding Pagoda to all four diagnostic packages. 
 

Improvements	
  to	
  NCL	
  
 
The NCL team completed the integration of Earth System Modeling Framework (ESMF) 
parallel regridding software into a May 2012 release of NCL. The ESMF software allows 
users to regrid to and from various topographically rectangular and is critical in the IPCC 
AR5 for comparing model runs generated on large, complex, and dissimilar grids.  
 
The NCL profiling capability developed last year was included in the May 2012 beta 
release and the 6.1.0 release in October, 2012.  
 
The NCL team began an effort to modernize the graphics code with a greater focus on 
performance and more accurate rendering of both structured and unstructured grids. A 
new MeshFill plotting algorithm is being developed to explicitly render arbitrary 
polygonal mesh cells to a raster plot. Benchmarking a preliminary version of the 
MeshFill method indicates that it offers a significant speed-up comparing with existing 
fill plotting.  A beta version of this code was made available in the version 6.1.0 release 
of NCL in October, 2012. Team members are actively exploring opportunities to add 
parallelism to help speed up the code for fill plotting as well as for generic polyline and 
polygon rendering.   
 
In the summer of 2012, the NCL team sponsored a SIParCS project to develop a Python-
based web interface that employs task parallelism to facilitate dynamic comparison of 
ocean model output.  The outcome of this project will be presented at a Python 
symposium at the 93rd AMS Annual Meeting in January 2013.  

Progress	
  on	
  long-­‐term	
  tasks	
  
 
ParVis’ long term plan for enabling ultra-large climate data analysis involves developing 
a new high-performance data-parallel library for performing standard climate calculations 
on both regular and unstructured grids, the Parallel Grided Analysis Library (ParGAL, 
formerly called the Parallel Climate Analysis Library). ParGAL is used to build a parallel 
version of NCL called ParNCL. We are also performing working to take in to account 
future hardware considerations including exploring compression, cloud computing 
approaches to analysis and new approaches to 3D visualization of climate data.  
Significant progress was made on all tasks. 

ParGAL	
  development	
  
 



After completing a working prototype in the first year, we now have a released version of 
ParGAL.  ParGAL is built upon the Mesh Oriented database (MOAB), Parallel Netcdf 
(PnetCDF) and Intrepid libraries.   The combination of MOAB and Intrepid enables the 
concise and succinct expression of the complex and computationally intensive algorithms 
such as computing vorticity and divergence.   
 
In the past 15 months, the library has been expanded to support the reading and analysis 
of more types of grids.  ParGAL must take care in reading gridded data because the 
algorithms use knowledge of the discretization, knowledge which is usually not included 
in the NetCDF metadata and so must be added by ParGAL/MOAB developers.  Currently 
we are able to handle data on three grid types from the Community Atmosphere Model, 
the Eulerian Spectral grid (CAM-Eul), Finite Volume (CAM-FV) grid and, most 
significantly, the unstructured Spectral Element (CAM-SE or HOMME) grid. 
 
ParGAL’s Pcvar class updates 
 
The Pcvar class has been updated to support variables read from file(s) or created by the 
user on all of three CAM grids (see MOAB section below). The types of grids are 
transparent to the user, so they don't have to be concerned about the underlying 
implementation. However, the user could get the grid type information by issuing a 
function call get_grid_type on a fileinfo object that stores the information about the 
file(s) read in. 
 
The user can still create a Pcvar by a name represented with a string and an argument 
stating whether it is read from file or user created as before. Beyond that functionality, 
the Pcvar object can also be built by taking user created MOAB tags. This is a feature 
intended for advanced users since the memory allocation and deallocation must be 
controlled explicitly by the user. 
 
ParGAL’s Pcvar class now supports missing data.  If the Pcvar object is created by 
reading a file variable, then an attribute called missing value or fill value will be checked. 
If such an attribute exists, then the missing value data member will be set for the Pcvar 
object. If the Pcvar object is created by the user, then the user has the option to specify a 
missing value. If the file variable doesn't have the missing value attribute or the user 
hasn't specified the missing value, then it will be set to 0 by default. Operations on a 
missing value will be ignored when the Pcvar object is used to perform various data 
analysis. 
 
Depending on the different types of the grid and the discretization, the variables could be 
stored at different locations on a MOAB mesh instance, such as on the file set, on the 
nodes, on the edges or on the cell centers. The location information will be set 
automatically for variables read from the file. The user has the freedom to set the location 
of user created Pcvar. It will be initialized to cell centers by default if the user doesn't 
specify one. Pcvar continues to provide the abstraction of the data stored on the MOAB 
mesh instance. The user doesn't have to have the knowledge of where the data is stored. 
 



ParGAL algorithm updates 
 
Three of the most time-consuming algorithms and the gather algorithm have been re-
implemented based on MOAB's new 2.5D representation of the structured grid (more 
information below), including dim_avg_n, max and min (changed to the same name used 
in NCL). Two of the new algorithms dim_max_n and dim_min_n are added. All of these 
algorithms will work for any dimension of the Eulerian Spectral grid and Finite Volume 
grid data. It also works for the HOMME grid if the input dimension is either time or 
level. The new versions of the algorithms are also now able to handle missing values. The 
algorithms won't distinguish the Pcvar constructed by different scenarios, file variables or 
user created, the types of grids the variable is from etc. 
 
ParGAL Software Engineering 
 
We are following modern software engineering practices in developing ParCAL. 
Autotools (autoconf, automake and libtool) have been used for generating automatic 
configuration scripts.  “make”, “make install” and “make check” are all implemented.   
“make check” invokes unit tests created with the Boost Test Library - Unit Test 
Framework.  The nightly build/test system has been expanded to test in 11 different 
configurations, and results are now open to the public. Continuing to follow good 
software development practice, all of the warnings generated by gcc are removed. The 
detailed build instructions and doxygen generated documentation could be found on the 
ParVis wiki. The library has also been tested on different platforms (Linux, MacOS) 
using different compilers (gcc, intel and pgi compilers). 

MOAB/ParGAL	
  development	
  

We have made several changes to MOAB to facilitate the development of ParGAL. 
 
The representation of structured grids in MOAB was changed from a fully 3D 
representation to a 2.5D representation to reduce the memory footprint; each variable has 
an extra dimension represented by the number of levels or intermediate levels, 
corresponding to the altitude. This has an implication on data ordering, as each level is 
contiguous in the file, so a transpose is necessary right after reading. This change also 
required re-writing many of the ParGAL algorithms already implemented. 
 
We have also enabled MOAB to better represent structured periodic grids in parallel and 
serial. 
 
One of the unique features of ParGAL through MOAB is the ability to represent the 
model output data on the same discretization as was used in the model while computing 
the solution.  In our initial prototype, we were treating all variables as if they were on the 
nodes of a computational grid.  In reality, most quantities are computed on cell centers.  
We made substantial changes to the NetCDF reader in MOAB to distinguish between 
different grid formats so that variables were read into MOAB and associated with the 
appropriate mesh geometrical entity, for example temperature at the element center rather 
than an element node.  Since this information is not in the NetCDF file, we added logic to 



the MOAB NetCDF reader to recognize which dycore was used (Eul, FV or SE) and 
place values on the appropriate entities.  Similar logic will have to be added for other grid 
types while we develop a more general solution. 
 
Other data in the NetCDF file is also now read in the MOAB.  Global attributes in the file 
are saved as sparse tags on the local mesh set on each processor.  Variable data are saved 
as dense tags associated to the nodes and elements in the mesh. Direct access to the 
memory occupied by the data is provided for dense tags, so the client can avoid 
expensive copy after the data has been read from disk. 
 
Additional changes in the specialized MOAB NetCDF reader were made for structured 
and unstructured meshes. 
1) structured mesh 

− Improve the performance of structured mesh interface, for mesh and variable 
reading in parallel;  

− specialize sharing and ghosting for structured grids. 
− Allow and identify periodic boundaries in the data automatically 

 
2)  unstructured mesh CAM-SE  (HOMME grids) 

− implement trivial partition,  in which each processor gets a balanced number of 
quad elements, ordered by their global index. 

− resolve sharing and ghosting using regular MOAB parallel communicator 
functions, for unstructured meshes 

− read nodal variables using asynchronous pnetcdf calls, on each processor, for each 
variable. Each processor reads fragments of the data corresponding to the local 
represented nodes, only.  

− introduce a global mesh set  on the root processor, that can be used to gather a 
variable (tag) from domain-decomposed meshes onto the root; 

− introduce the spectral mesh tool 
 
Near Term development. 
 
We plant to complete the implementation of spectral mesh tool to allow for a direct use of 
Intrepid spectral element functions and methods for various algorithms.  For structured 
meshes, allow certain data to be associated with edges.  We will work with CAM 
developers to eliminate the need for the extra connectivity array for HOMME grids; the 
connectivity could be included in the regular data file.  We will extend the reader to other 
climate specific meshes, like MPAS grids.  Finally we will develop a dedicated 
partitioner for better balancing for unstructured meshes and extend the ghosting 
capability.  
 

Intrepid/ParGAL	
  development	
  
 
The work of Sandia’s team during this reporting period focused on the development, 
testing, and implementation of parallel algorithms to perform operations currently 



handled by NCL spherical harmonic functions. The ParGAL implementation uses the 
finite element method to compute derivatives for quantities such as vorticity and 
divergence and to solve simple partial differential equations for streamfunction and 
velocity potential. 
Initial implementation of the ParGAL functions provided a capability to compute these 
quantities on quadrilateral elements for given nodal velocity components. As mentioned 
above, additions to the MOAB netcdf file reader provided the ability to distinguish 
between different grid formats so that variables were read into MOAB and associated 
with the appropriate mesh geometrical entity.  This led to the need for alternative 
formulations of the algorithms for velocity components given at locations other than 
element nodes that we implemented in the past year. 
 
Specific grid-based formulations have been developed for the three CAM grids ParGAL 
and MOAB can currently read.  Output for CAM-Eul and CAM-FV contain velocity 
components at the cell centers and for CAM-SE the velocity components are located on 
the cell nodes. Progress on algorithms for each of the grids is given in more detail in the 
sections that follow. In addition, Table 1 provides a description of the NCL spherical 
harmonic functions that have been adapted along with the status of the parallel algorithm 
development. 
 
Table 1: Status of development and implementation of parallel algorithms for the NCL spherical 
harmonic functions. 
NCL Function Description Status 
uv2dv(F,f,G,g) Divergence from velocity field In ParGAL for CAM-FV, CAM-

Eul and CAM-SE grids 
uv2vr(F,f,G,g) Vorticity from velocity field In ParGAL for CAM-FV, CAM-

Eul and CAM-SE grids 
uv2vrdv(F,f,G,g) Vorticity and divergence from 

velocity field 
In ParGAL for CAM-FV, CAM-
Eul and CAM-SE grids 

uv2sfvp(F,f,G,f) Streamfunction and velocity potential 
from velocity field 

Implementation developed for 
nodal quantities, structured grids 

sfvp2uv(f,g) Wind components from 
streamfunction and velocity potential 

Implementation developed for 
nodal quantities, structured grids 

 
 
 
Vorticity/divergence for CAM-Eul and CAM-FV Grids  
 
Algorithms were developed and tested to compute vorticity and divergence on structured 
Gaussian or fixed latitude/longitude grids given cell-centered velocity components.  The 
vorticity and divergence are computed with the finite element method, which provides a 
method to handle unstructured meshes and is straightforward to parallelize. A formal L2 
projection is used to build a linear system that is solved for the cell-centered vorticity or 
divergence values. The algorithm leverages several packages from the Trilinos project 
including Intrepid for element basis functions and quadrature rules, Epetra for distributed 
linear algebra tools, and AztecOO and ML for solving and preconditioning the linear 
system. 



 
For testing purposes a velocity field derived from a streamfunction that is a wavenumber 
four Rossby-Haurwitz wave and a low-order spherical harmonic function for the velocity 
potential has been used.  Given this velocity field an exact expression for the vorticity 
and divergence can be derived and errors between the exact solution and our finite 
element approach calculated. 
 
Convergence rates for the vorticity and divergence algorithms were determined by 
computing the Rossby wave solution on two sets of grids. The first set includes three 
grids in a CAM-FV configuration that are equispaced and have resolutions of 
appoximately 4 degrees (48x72), 2 degrees (96x144), and 1 degree (192x288). The 
second set consists of the three Gaussian grids T31, T42, and T85 with resolutions of 
48x96, 64x128 and 128x256, respectively. Results from the convergence test are given in 
Tables 2 and 3. Plots of the vorticity and divergence for the test case from the  
 
Table 2: Errors and convergence rates in the ParGAL computation of vorticity for the Rossby 
wave test case. 
Mesh Size L2 error Rate L1 error Rate 
4°  FV 48x72 4.45x10-3  2.18x10-3  
2°  FV 96x144 1.35x10-3 1.72 5.51x10-4 1.98 
1°  FV 192x288 4.47×10-4 1.66 1.42x10-4 1.97 
T31 48x96 1.58x10-3  1.26x10-3  
T42 64x128 9.34x10-4 1.83 7.36x10-4 1.87 
T85 128x256 2.51x10-4 1.84 1.98x10-4 1.89 
 
Table 3: Errors and convergence rates in the ParGAL computation of divergence for the Rossby 
wave test case. 
Mesh Size L2 error Rate L1 error Rate 
4°  FV 48x72 1.11x10-2  5.37x10-3  
2°  FV 96x144 3.37x10-3 1.72 1.33x10-4 1.99 
1°  FV 192x288 1.12×10-3 1.65 3.45x10-5 1.97 
T31 48x96 7.77x10-3  4.30x10-3  
T42 64x128 4.87x10-3 1.62 2.51x10-4 1.87 
T85 128x256 1.71x10-3 1.54 6.67x10-4 1.90 
 
ParGAL finite element implementation and the standard NCL spherical harmonic 
implementation for the T42 grid are shown in Figure 7. 



Figure 7.  Vorticity(a) and divergence(b) from the ParGAL algorithm and vorticity(c) and 
divergence(d) from the NCL spherical harmonic algorithm on the T42 CAM-Eul grid for 
the Rossby wave test case. 
 
Streamfunction and Velocity Potential for CAM-Eul and CAM-FV Grids.  
 
Algorithms were developed to compute the streamfunction and velocity potential given 
nodal velocities on structured Gaussian or fixed grids. Work continues on implementing 
the algorithms for cell-centered velocities. The streamfunction and velocity potential are 
the solutions of the Poisson equations.  The finite element method is used to solve these 
equations using a weak formulation that depends explicitly on the velocity components 
rather than the divergence and vorticity. 
 
To test the algorithm the streamfunction and velocity potential were computed for the 
Rossby wave velocity field on grids from the two mesh sets described in the previous 
section. Convergence rates are shown in Tables 4 and 5. Plots of the streamfunction and 
velocity potential for the test case from the ParGAL finite element implementation and 
the standard NCL spherical harmonic implementation for the T42 grid are shown in 
Figure 8. 
 
Vorticity/divergence for CAM-SE Grid.  
 
Algorithms were developed to compute vorticity and divergence on the cubed-sphere grid 



 
Figure 8:  Streamfunction(a) and velocity potential(b) from the ParGAL algorithm and 
streamfunction(c) and velocity potential(d) from the NCL spherical harmonic algorithm 
on the T42 CAM-Eul grid for the Rossby wave test case. 
 
Table 4: Errors and convergence rates in the ParGAL computation of streamfunction for the 
Rossby wave test case. 
Mesh Size L2 error Rate L1 error Rate 
4°  FV 48x72 1.49x10-3  1.31x10-3  
2°  FV 96x144 3.79x10-4 1.97 3.33x10-4 1.98 
1°  FV 192x288 9.56×10-5 1.98 8.42x10-5 1.98 
T31 48x96 1.16x10-2  7.52x10-3  
T42 64x128 7.49x10-3 1.52 4.47x10-3 1.81 
T85 128x256 2.61x10-3 1.52 1.26x10-3 1.82 
 
Table 5: Errors and convergence rates in the ParGAL computation of velocity potential for the 
Rossby wave test case. 
Mesh Size L2 error Rate L1 error Rate 
4°  FV 48x72 8.63x10-4  8.44x10-4  
2°  FV 96x144 2.09x10-4 2.06 2.02x10-4 2.06 
1°  FV 192x288 5.17×10-5 2.04 4.97x10-5 2.04 
T31 48x96 7.82x10-4  7.72x10-4  
T42 64x128 4.32x10-4 2.06 4.26x10-4 2.07 
T85 128x256 1.06x10-4 2.04 1.04x10-4 2.04 

(a) (b) 

(c) (d) 



used for the HOMME spectral element model.   In the initial implementation of the 
vorticity and divergence algorithms the nodes of the CAM-SE grid are separated into 
individual quadrilaterals rather than into high-

Figure 9:  Vorticity (a) and divergence (b) computed on a CAM-SE grid for the Rossby 
wave test case using ParGAL. 
 
order degrees-of-freedom for the coarse spectral elements. Therefore, bilinear basis 
functions are used to compute the vorticity and divergence. Future implementations will 
treat the CAM-SE grid as composed of spectral elements and will use the correct spectral 
element basis functions to compute these quantities. Plots of vorticity and divergence for 
the Rossby wave test case and computed for the eight coarse element per face CAM-SE 
grid (np=4,ne=8) are shown in Figure 9. Note that no comparison with NCL is provided 
since the NCL algorithm is currently restricted to fixed and Gaussian spherical grids.    

ParNCL	
  Development	
  and	
  Release	
  
 
ParNCL (Parallel NCL) is a parallel version of the NCL interpreter that performs climate 
data analysis in parallel using ParGAL (and Intrepid) and MOAB. 
 
At the end of our first progress report, we had a prototype version of ParNCL working.  
We released a beta version (1.0.0b1) to the community on Dec 7th, 2012.  Several new 
documents were added and old documents modified in the ParVis wiki related to 
ParNCL. The wiki now contains a set of NCL scripts that work with both NCL and 
ParNCL for users to try out.  Detailed instructions for building ParNCL were developed 
for users who want to build their own version. 
 
ParNCL currently supports the same grids as ParGAL, CAM Eulerian Spectral grid, 
CAM Finite Volume grid and CAM HOMME grid.   We will next be adding support for 
MPAS-ocean and POP grids. 
 
Current ParNCL features 
Other features of our beta version of ParNCL developed over the past year include: 
 
Distributed Multidimensional Data Subscripting 

(a) (b) 



ParNCL supports selection of ranges of data from the multidimensional climate data read 
from a NetCDF file. Users can currently perform the following types of selections on 
data read from CAM Eulerian Spectral and CAM Finite Volume grids. 
 
 Range subscripting 

Users can provide a beginning and end index of a multidimensional variable 
followed optionally by a stride value to select a data range. 

 Vector subscripting 
Users can explicitly provide the indices of the selection of a multidimensional 
variable in a vector to get the data slice. 
 

Analysis Operations 
 
 ParGAL Data Analysis functions 

Users can perform data analysis on data read from a climate data file using NCL 
functions that have a corresponding ParGAL data analysis function. An example 
would be computing the average of a variable’s given dimension(s) at all other 
dimensions using the NCL dim_avg_n() function. 
 

 Simple Math Functions 
Users can perform simple math operations on data using NCL functions that are 
supported by ParNCL. ParNCL interacts with MOAB and ParGAL to read data 
from NetCDF files, performs data analysis on the data and stores the result back 
to the MOAB database. An example of this type of operation would be computing 
sine of all the values in a multidimensional array using the NCL sin() function. 
 

 Simple Math operations 
Apart from using the built-in math functions in NCL, users can perform simple 
math operations like scaling, addition, subtraction of multidimensional data in 
ParNCL. 
 

 Viewing and Plotting 
ParNCL supports NCL functions to view data (and metadata) by printing it to 
stdout. It also supports all NCL graphics functions. The NCL graphics functions 
execute serially and any distributed multidimensional data passed to these 
functions is gathered by the interpreter before executing the function. 
 

 New Operations 
ParNCL supports some new operations that were not supported by NCL like 
calculating vorticity and divergence on a HOMME grid. We have added two new 
functions uv2vrA(), to calculate vorticity from wind components and uv2dvA() to 
calculate divergence from wind components in ParNCL. 
 

The table below gives a summary of the NCL functions currently supported in ParNCL. 
For more information on these functions please refer to the NCL documentation 
(http://www.ncl.ucar.edu/Document/index.shtml). 



 
NCL function name Climate Data Grids Supported 

CAM Eulerian 
Spectral grid 

CAM Finite 
Volume grid 

CAM HOMME 
grid 

addfile YES YES YES 
addfiles YES YES YES 

dim_avg_n YES YES YES 
dim_max_n YES YES YES 
dim_min_n YES YES YES 

dimsizes YES YES YES 
max YES YES YES 
min YES YES YES 
print YES YES YES 

printVarSummary YES YES YES 
systemfunc YES YES YES 

uv2vrA YES YES YES 
uv2dvA YES YES YES 

abs YES YES YES 
acos YES YES YES 
asin YES YES YES 
atan YES YES YES 
atan2 YES YES YES 
cos YES YES YES 
exp YES YES YES 
fabs YES YES YES 
floor YES YES YES 
log YES YES YES 

log10 YES YES YES 
sin YES YES YES 
sinh YES YES YES 
ceil YES YES YES 

Visualization functions YES YES YES 
 
 
ParNCL Software Engineering: 
 
We also modified the NCL test suite to incorporate ParNCL tests. The test suite was 
modified to run the NCL scripts using ParNCL and verify the results by running the same 
NCL script using the serial version of NCL. 
 
 We also added some new features to the NCL test suite to, 
 
 Allow users to customize the test suite at runtime via a testlist file (Only the tests 

specified in the testlist file is executed) 
 Allow users to specify a query path to the test suite to locate the NCL interpreter 



 Specify ParNCL-specific information like number of processors to execute the job, 
the job launcher etc. 

 
Near Term Development. 
 
The most immediate development needs for ParNCL are to support more climate data 
grids and implement data-parallel versions of more NCL analysis functions. 
 
We also plan to add NCL data creation functions like new(), fspan() to allow users to 
create distributed data. We also need to provide support for coordinate subscripting 
(specify coordinates to subscript data) and named subscripting (specify name of 
dimensions when subscripting data) in future. Support for variable subscripting will also 
be extended to CAM HOMME grids. 
 

Data	
  Compression	
  for	
  Ultra-­‐Large	
  data	
  sets	
  
 
The move toward high-resolution climate models creates bottlenecks for model output 
and analysis input that cannot be solved by increasing the scale of current parallel file 
systems.  Additionally, the total volume of data generated by the models will quickly 
exceed our capacity to store the data during simulations or for post analysis. ParVis and 
the PNNL team are investigating algorithms, based on information theory, that work 
effectively on floating point climate model outputs.  To ease adoption, we are integrating 
our compression capabilities into the Parallel NetCDF library, which is currently used by 
existing high-resolution climate codes such as the CESM and GCRM. 
 
Our compression schemes contain two phases: the first phase predicts the next value 
based on the previous values, the second phase encoded the next value with entropy-
based encoding. In the first year, we compared our scheme against other schemes, 
evaluated various design choices, implemented a prototype and gathered some 
preliminary results.  In the past 15 months, we have made a more detailed analysis of our 
compression technique. 
 
Since some of our prediction algorithms can predict the exponent part of floating point 
value and the most significant bit of the significant part of the float point numbers well 
but not less significant bits, our lossy compression can achieve good compression ratios. 
Preliminary results, using Matlab and R, show that we can reduce the data by an order of 
magnitude when the error bound is 10%.  Table 6 shows some results for different data 
using different methods.  A more complete experiment and analysis is currently in 
progress.  
 
 
 Nearby value 

+ run length 
encoding 

Nearby value 
+ prefix 
encoding 

Nearby value 
+ run length 
encoding with 
10% error 
bound 

Nearby value + 
prefix encoding 
with 10% error 
bound  

Gzip	
  

CCSM Temperature 0.513 0.438 0.371 0.126 0.723	
  



CCSM Fractional Cloud 
Cover 

0.437 0.330 0.236 0.082 0.402	
  

CCSM Q Tendency 0.399 0.285 0.218 0.066 0.338	
  
CCSM Cloud Ice 0.317 0.194 0.222 0.041 0.320	
  
 
Table 6 Compression ratios for different variables from two different data sets using different compression algorithms.  
The first three are all lossless and the forth column represents a lossy compression. 

Implementation in PnetCDF 
 
Though compression can be implemented at various points of the I/O stack, in the past 
year we began implementation within the Parallel NetCDF library. The flexibility of the  
PNetCDF interface creates a very challenging environment for optimizing compression at 
the Parallel NetCDF layer.   However, we note that climate models typically follow a 
pattern of appending data, writing without strides, and using collective I/O and will use 
this information to create a targeted implementation for high-resolution model outputs.  
In the future, our implementation can be generalized to more usage patterns.  Output by 
PNetCDF is an option in the PIO library used by CESM and used by ParGAL/ParNCL 
for input and this work will ultimately allow us to keep data compressed throughout the 
climate model workflow.   

Preliminary Performance Results 
 
For our initial performance tests, we use 28 km data (27 layers) temperature data from the 
GCRM. We developed a simple Parallel NetCDF benchmark to test reading and writing 
GCRM data and to examine the performance costs in depth. Our test environment is a 
linux cluster with fat memory nodes.  
 
Figure 10 (left) shows the read performance. As we can see from the graph, when we 
only have one MPI process and use the luster parallel file system, the I/O is not the major 
bottleneck.  Decompression causes computation overhead and hence the read compressed 
version is slower. Note that no optimizations have yet been applied. When we use parallel 
I/O and have many MPI processes to speed up data retrieval, reading compressed data 
outperform uncompressed data. For writing, we observe the similar behavior (Figure 10 
right).  
 

 



Figure 10: Total read and write performance.  The y axis is time in seconds.  The x axis shows 
varying numbers of nodes and processors counts.   In all cases, the lustre striping count was set to 
eight. 
 

Our results to date are promising even without optimization.  However, there are many 
optimizations that need to be evaluated ranging from: choosing an algorithm that best fits 
a variable and its mesh by examining the header information, simple compiler 
optimizations, data parallel instruction, restructure of code to reduce branch 
mispredictions and minimize cache misses and chunking of pipelining. 

For correctness testing, we have built the Pagoda parallel analysis library 
(https://svn.pnl.gov/gcrm/wiki/Pagoda) with our compression enabled version of Parallel 
NetCDF and verified that operators that slice in time, horizontal, and vertical dimensions 
produce results that when decompressed, exactly match the original data. 

3D	
  visualization	
  and	
  analysis	
  
 
ParVis work on advanced visualization techniques for the past 15 months focused on 
geodesic grids.  Geodesic grids are commonly used in climate modeling.  Visualization of 

large geodesic grid data imposes some 
unique challenges. First, the data structure 
of geodesic grids is typically constructed 
using a recursive refinement procedure on 
a spherical surface, thus presenting very 
different geometry properties from other 
existing unstructured grids. Second, 
commodity graphics hardware is designed 
for rendering with trilinear interpolation 
of planar data. The spherical geodesic 

grid data is not organized in such manner, so it cannot be rendered directly by the 
graphics hardware. Third, even though it is possible to transform geodesic grids into 
more generally supported grids, such as tetrahedral grids, for visualization, this approach 
often incurs significant computing and storage overhead, and can become infeasible to 
process large data from current petascale and future exascale simulations. 
 
The UC Davis team has developed an interactive ray-casting rendering method for 
visualizing hexagonal grid volume data without first decomposing each hexagonal 
element into multiple tetrahedral ones. Highly efficient, high quality rendering is 
achieved with an analytic solution for the interpolation of scalar values with adaptive 
sampling along a ray within each hexagonal grid cell.   A gradient estimation method for 
rendering hexagonal grid volume data is introduced to achieve smooth shading and 
highlight to provide important cues for shape and depth. To harnessing the power of 
GPUs, we organize geodesic grid data structure in GPU memory to best match the 
original storage format and minimize the data transformation overhead.  Table 7 shows 
the information of the GCRM data set used in our experimental study on a desktop 

Table 7 The GCRM data sets 



computer with dual Intel Xeon CPUs, 24GB memory and dual NVIDIA GTX 580 GPUs. 
The rendering performance results are shown in Table 8. 
 
Table 8: Rendering performance for the low resolution (left) and high resolution GCRM 

datasets 
   

 

 
The new 

rendering method can generate high quality visualization of full resolution geodesic grid 
data, and allows scientists to see greater details from their large climate simulations at 
interactive rates. Figure 11 compares our method with the conventional tetrahedron based 
approach and Mean Value Interpolation approach. In addition to superior rendering 
quality,  our method also achieves substantially higher efficiency over the tetrahedron 
based metohd and the mean value interpolation method, as shown in Figure 12.  

 

 
 
Figure 11: Rendering quality 
comparison of our approach with the 
conventional tetrahedron based 
method and mean value 
interpolation (MVI) in a close-up 
views. The images are rendering of 
high-resolution vorticity data.  
 
Figure 12: Performance measures 
and comparison with the 
conventional tetrahedron based 
method and mean value 

interpolation approach. 



 
Finally, Figure 13 displays mesh rendering, volume rendering of global atmosphere 
vorticity field with geophysical information superimposed, and  a close-up view of a 
region of interest in the global atmosphere.   

                       Figure 13:  Results from visualization 



Project	
  Management	
  

Project	
  organization	
  and	
  resources	
  
 
The PI is responsible for coordinating effort among the various tasks and insuring 
progress is made on deliverables.  The project is spread over 5 institutions and a “lab 
lead” at each is responsible for coordination of the ParVis members at their respective 
institutions.  The leads are:  Robert Jacob (ANL), Pavel Bochev (Sandia), Karen 
Schuchardt (PNNL), Don Middleton (NCAR) and Kwan-Liu Ma (UC-Davis). 
 
All team members participate in biweekly conference calls devoted to updates and 
discussion of near-term development.  The ANL web and audio service provider, 
AdobeConnect, is used to facilitate sharing presentations and recording notes from the 
call. Two mailing lists hosted by Argonne are also used by the team: one for general 
discussion (parvis) and another for development details and code check-in messages 
(parvis-dev). 
 
We have biannual all-hands meetings.  Our fourth meeting was held March 22-23, 2012, 
at Argonne National Laboratory and our fifth meeting was October 25-26, 2012, at 
NCAR.   
 
The PI keeps the ParVis advisory panel (David Randall (CSU) and William Gustafson 
(PNNL), Gokhan Danabasoglu (NCAR), Cecilia Bitz (University of Washington) and  
David Lawrence (NCAR)) advised of progress and solicits feedback from them. 
 
The MCS division at Argonne provides resources for software development (svn 
repository, bug tracking and test/development machines).  We have also obtained an 
allocation of computer time on Argonne’s Fusion cluster for testing on tens to hundreds 
of processors.  ParVis developers have been given access to the Eureka analysis/viz 
cluster at the Argonne Leadership Computing Facility through the INCITE project led by 
Warren Washington (time on Eureka is not charged to the project) 
	
  
Communication	
  with	
  the	
  broader	
  community  
 
We maintain a website (http://trac.mcs.anl.gov/projects/parvis) to both host software we 
make available for the community and provide notes and material for ParVis team 
members.  Most of the content is world readable except for the repository and the ticket 
system. ParGAL is open source and instructions are available to download directly from 
the repository.  We also have tarballs available of the ParNCL source and binaries for 
some systems.  We also maintain a one-way mailing list (parvis-ann) that anyone can 
subscribe to for announcements about ParVis and ParVis software. 
 
The ParVis PI along with the PI’s of the other visualization projects submitted a 
successful session proposal for the Fall 2011 AGU (Dec, 2011) meeting that informed the 
community about our efforts.  The ParVis project gave a talk at the oral session and 
presented a poster on the task-parallelism scripts at the poster session.  We updated the 



CESM community about ParVis with both a poster and a presentation at the 17th annual 
CESM Workshop in June, 2012.   We also gave a tutorial on how to run the task-parallel 
versions of the diagnostic scripts at the workshop that was attended by 35-40 people.  The 
slides from the tutorial are available online.   A poster about ParVis was accepted and 
presented at SC12 in November, 2012.  Finally, our AGU session was repeated at the Fall 
2012 AGU  (Dec, 2012) meeting.   Members of the ParVis team presented a talk on Swift 
and poster on ParVis was also given.  The poster presentation included the announcement 
of the release of the beta version of ParNCL. 
 
To support our users, we have set up a parvis-users mailing list to field questions.  We are 
also maintaining installed versions of ParNCL and the Swift diagnostics on DOE analysis 
machines (such as lens at ORNL and eureka at ANL). 

Interaction	
  with	
  other	
  projects	
  
 
We have continued to have discussions with the other LAB10-05 projects on how to 
collaborate.  
 
Members of the BER “Ultra High Resolution Global Climate Simulation” project (PI: 
Jim Hack, ORNL) have contacted us about using the Swift-based AMWG diagnostics to 
help analyze their data.   We will be working with them to develop diagnostics that are 
both task parallel and operate directly on the CAM-SE grid.  We have examined new 
diagnostic scripts created by the “Climate Science for a  Sustainable Energy Future” 
project to plot precipitation cycles to see if they can benefit from task parallelism. 
 


