

Parallel Analysis Tools and New Visualization Techniques
 for Ultra-Large Climate Data Sets (ParVis)

PROGRESS REPORT: 2011-2012

Argonne National Laboratory: Robert Jacob, Xiabing Xu, Jayesh Krishna, Sheri
Mickelson, Tim Tautges, Mike Wilde, Robert Latham, Ian Foster, Rob Ross, Jay Larson
Sandia National Laboratory: Pavel Bochev, Kara Peterson
Pacific Northwest National Laboratory: Karen Schuchardt, Jian Yin, Tekin Bicer
National Center for Atmospheric Research: Don Middleton, Mary Haley, David Brown,
Richard Brownrigg, Wei Huang, Dennis Shea, Mariana Vertenstein
University of California-Davis: Kwan-Liu Ma, Jinrong Xie

	

Summary	

ParVis is a project funded under LAB 10-05: “Earth System Modeling: Advanced
Scientific Visualization of Ultra-Large Climate Data Sets”. Argonne is the lead lab with
partners at PNNL, SNL, NCAR and UC-Davis.

This report covers progress from October 1st, 2011 through Dec 21st, 2012.

A primary focus of ParVis is introducing parallelism to climate model analysis to greatly
reduce the time-to-visualization for ultra-large climate data sets. For this report, it is
convenient to summarize the work as two tracks with different time horizons: one track
is to provide immediate help to climate scientists already struggling to apply their
analysis to existing large data sets. The other track focused on building a new data-
parallel library and tool for climate analysis and visualization that will give the field a
platform for performing analysis and visualization on ultra-large datasets for the
foreseeable future.

We made good progress on our second-year milestones and completed our 2nd-year
deliverable: task parallel (with Swift) versions of other CESM diagnostic packages. We
completed the ocean and sea-ice model working group packages to add to the
atmosphere model working group package from the first year.

We also made a beta release of our ParNCL application to the community.

Progress	
 on	
 short-­‐term	
 improvements	

Swift-­‐based	
 climate	
 model	
 diagnostics	

Swift is a system for the rapid and reliable specification, execution, and management
of large-scale science and engineering workflows. It supports applications that execute
many tasks coupled by disk-resident datasets - as is common, for example, when
analyzing large quantities of data or performing parameter studies or ensemble
simulations. The diagnostic plots made by c-shell scripts developed by CESM working
groups can straightforwardly be recast as many-task parallel applications. The diagnostic
scripts use a combination of NCO utilities (ncra, etc.) to perform data reduction and NCL
to make additional calculations and plots. Plots from these scripts are used extensively by
scientists evaluating climate model integrations.

The introduction of task parallelism to diagnostic workflows has been very successful and
provided immediate speed increases.

A task parallel version of the Atmospheric Model Working Group diagnostics was
completed in our first year and released on the ParVis home page. The Swift version was
merged with the main development and released in version 5.3 of the AMWG diagnostics
on January 31, 2012.

Since the release of our version of the Atmospheric Model Working Group diagnostics
last year, we have updated the package to re-grid SE files to FV. This was needed to plot
the results with NCL. We also were able to create a branch version that replaces the
NCO calls with Pagoda. Pagoda, developed as part of the Colorado State University
Global Cloud Resolving Model project, provides parallel versions (using Global Arrays)
of the NCO utilities. This introduced a layer of data-parallelism to the already task-
parallel version of the AMWG diagnostics package. We were able to run this version
with 5 years of ¼ degree SE data that was upsampled to 1/10th degree FV grid. Each of
the monthly history files were 24GB. The results are shown in Figure 1. The Swift-only
version was able to compute the climate averages 4X faster. Running with pagoda
instead on NCO, the Swift/pagoda version was able to run in less than 1 hour and cut the
Swift-only time by about half. The original serial version took almost 9 ½ hours to
compute the same files.

Figure 1: Swift speedups for high-resolution atmosphere data using Swift and Pagoda

Since the last report we’ve also released an NCL and Swift version of the Ocean Model
Working Group (OMWG) diagnostic package. The original version of the package used
IDL to create the plots. To achieve more portability, the NCAR NCL team rewrote the
original IDL scripts in NCL. We also re-wrote the top level c-shell scripts in Swift to
compute the climate average files, create the NCL plots, and convert the images files in
parallel. The results are shown in Figures 2-4. The OMWG diagnostic package contains
three separate scripts. The first script compares model data to observational data (Figure
2). The second compares two model runs against each other (Figure 3). The final script
computes a time series (Figure 4).

0:00:00	

2:24:00	

4:48:00	

7:12:00	

9:36:00	

12:00:00	

Original	
 W/	
 Swift	
 W/	
 Swift	
 &	
 Pagoda	

Ti
m
e	

(h
ou
rs
)	

AMWG	
 Diagnostic	
 Package	

Timings	

5	
 years	
 of	
 .10	
 degree	
 data	
 on	
 midway	

Figure 2: Timings for the OWMG diagnostic package popdiag script

All of the timings were run using the same 10 year 1 degree history files. The popdiag
script compared the 10 years against observational data. The popdiag script compared
the first 5 years against the later 5 years. The popdiagts script

Figure 3: Timings for the OWMG diagnostic package popdiagdiff script

Figure 4: The OMWG diagnostic package popdiagts script

created a time series for the full 10 years of data. The popdiag and popdiagdiff scripts
each saw about a 3x speedup computing the climate average files and saw a very large
improvement in the time it took to create the plots using NCL. The popdiagts script saw
an even greater improvement in computing the climate files because there were more
tasks that were able to be computed in parallel. There wasn’t as big of an improvement
seen with the NCL plots because there aren’t as many scripts available for task

parallelism. This version was released to the community through the OMWG in June,
2012.

Since this first release of the ocean model diagnostics, we’ve released a second version
that allows users to run with hi-resolution data (1/10th degree). We tested this second
version comparing 1 year of 1/10th degree data against observations. The results are
shown in Figure 5. The original version took about 6 ¾ hours to run. The Swift version
was able to reduce this time to about 1 ½ hours.

Figure 5: The OMWG diagnostic package ran with hi-resolution data

We have also complete work on re-writing the Ice Model Diagnostic Package in Swift.
It’s currently available to friendly users and we hope to release it to the community soon.
Our initial timing results show almost a 4x speedup. Figure 6 shows the results of
comparing 2, 20 year 2 degree data sets to each other.

0:00:00	

1:12:00	

2:24:00	

3:36:00	

4:48:00	

6:00:00	

7:12:00	

averaging	
 ncl	
 convert	
 total	

OMWG	
 Diagnostic	
 Package	
 ran	
 with	
 1	

year	
 of	
 1/10	
 degree	
 history	
 Ciles	
 	

(ran	
 on	
 lens)	
 	
 	

Original	

Swift	

0:00:00	

0:07:12	

0:14:24	

0:21:36	

0:28:48	

0:36:00	

AVG	
 NCL	
 CONVERT	
 TOTAL	

Ice	
 Model	
 Diagnostic	
 Timings	

ORIG	

SWIFT	

Figure 6: The Ice Model Diagnostic Package timings comparing two datasets to each other

We have also started work on the Land Model diagnostic package. We hope to have this
completed in the first quarter next year. After this work is complete, we will focus on
adding Pagoda to all four diagnostic packages.

Improvements	
 to	
 NCL	

The NCL team completed the integration of Earth System Modeling Framework (ESMF)
parallel regridding software into a May 2012 release of NCL. The ESMF software allows
users to regrid to and from various topographically rectangular and is critical in the IPCC
AR5 for comparing model runs generated on large, complex, and dissimilar grids.

The NCL profiling capability developed last year was included in the May 2012 beta
release and the 6.1.0 release in October, 2012.

The NCL team began an effort to modernize the graphics code with a greater focus on
performance and more accurate rendering of both structured and unstructured grids. A
new MeshFill plotting algorithm is being developed to explicitly render arbitrary
polygonal mesh cells to a raster plot. Benchmarking a preliminary version of the
MeshFill method indicates that it offers a significant speed-up comparing with existing
fill plotting. A beta version of this code was made available in the version 6.1.0 release
of NCL in October, 2012. Team members are actively exploring opportunities to add
parallelism to help speed up the code for fill plotting as well as for generic polyline and
polygon rendering.

In the summer of 2012, the NCL team sponsored a SIParCS project to develop a Python-
based web interface that employs task parallelism to facilitate dynamic comparison of
ocean model output. The outcome of this project will be presented at a Python
symposium at the 93rd AMS Annual Meeting in January 2013.

Progress	
 on	
 long-­‐term	
 tasks	

ParVis’ long term plan for enabling ultra-large climate data analysis involves developing
a new high-performance data-parallel library for performing standard climate calculations
on both regular and unstructured grids, the Parallel Grided Analysis Library (ParGAL,
formerly called the Parallel Climate Analysis Library). ParGAL is used to build a parallel
version of NCL called ParNCL. We are also performing working to take in to account
future hardware considerations including exploring compression, cloud computing
approaches to analysis and new approaches to 3D visualization of climate data.
Significant progress was made on all tasks.

ParGAL	
 development	

After completing a working prototype in the first year, we now have a released version of
ParGAL. ParGAL is built upon the Mesh Oriented database (MOAB), Parallel Netcdf
(PnetCDF) and Intrepid libraries. The combination of MOAB and Intrepid enables the
concise and succinct expression of the complex and computationally intensive algorithms
such as computing vorticity and divergence.

In the past 15 months, the library has been expanded to support the reading and analysis
of more types of grids. ParGAL must take care in reading gridded data because the
algorithms use knowledge of the discretization, knowledge which is usually not included
in the NetCDF metadata and so must be added by ParGAL/MOAB developers. Currently
we are able to handle data on three grid types from the Community Atmosphere Model,
the Eulerian Spectral grid (CAM-Eul), Finite Volume (CAM-FV) grid and, most
significantly, the unstructured Spectral Element (CAM-SE or HOMME) grid.

ParGAL’s Pcvar class updates

The Pcvar class has been updated to support variables read from file(s) or created by the
user on all of three CAM grids (see MOAB section below). The types of grids are
transparent to the user, so they don't have to be concerned about the underlying
implementation. However, the user could get the grid type information by issuing a
function call get_grid_type on a fileinfo object that stores the information about the
file(s) read in.

The user can still create a Pcvar by a name represented with a string and an argument
stating whether it is read from file or user created as before. Beyond that functionality,
the Pcvar object can also be built by taking user created MOAB tags. This is a feature
intended for advanced users since the memory allocation and deallocation must be
controlled explicitly by the user.

ParGAL’s Pcvar class now supports missing data. If the Pcvar object is created by
reading a file variable, then an attribute called missing value or fill value will be checked.
If such an attribute exists, then the missing value data member will be set for the Pcvar
object. If the Pcvar object is created by the user, then the user has the option to specify a
missing value. If the file variable doesn't have the missing value attribute or the user
hasn't specified the missing value, then it will be set to 0 by default. Operations on a
missing value will be ignored when the Pcvar object is used to perform various data
analysis.

Depending on the different types of the grid and the discretization, the variables could be
stored at different locations on a MOAB mesh instance, such as on the file set, on the
nodes, on the edges or on the cell centers. The location information will be set
automatically for variables read from the file. The user has the freedom to set the location
of user created Pcvar. It will be initialized to cell centers by default if the user doesn't
specify one. Pcvar continues to provide the abstraction of the data stored on the MOAB
mesh instance. The user doesn't have to have the knowledge of where the data is stored.

ParGAL algorithm updates

Three of the most time-consuming algorithms and the gather algorithm have been re-
implemented based on MOAB's new 2.5D representation of the structured grid (more
information below), including dim_avg_n, max and min (changed to the same name used
in NCL). Two of the new algorithms dim_max_n and dim_min_n are added. All of these
algorithms will work for any dimension of the Eulerian Spectral grid and Finite Volume
grid data. It also works for the HOMME grid if the input dimension is either time or
level. The new versions of the algorithms are also now able to handle missing values. The
algorithms won't distinguish the Pcvar constructed by different scenarios, file variables or
user created, the types of grids the variable is from etc.

ParGAL Software Engineering

We are following modern software engineering practices in developing ParCAL.
Autotools (autoconf, automake and libtool) have been used for generating automatic
configuration scripts. “make”, “make install” and “make check” are all implemented.
“make check” invokes unit tests created with the Boost Test Library - Unit Test
Framework. The nightly build/test system has been expanded to test in 11 different
configurations, and results are now open to the public. Continuing to follow good
software development practice, all of the warnings generated by gcc are removed. The
detailed build instructions and doxygen generated documentation could be found on the
ParVis wiki. The library has also been tested on different platforms (Linux, MacOS)
using different compilers (gcc, intel and pgi compilers).

MOAB/ParGAL	
 development	

We have made several changes to MOAB to facilitate the development of ParGAL.

The representation of structured grids in MOAB was changed from a fully 3D
representation to a 2.5D representation to reduce the memory footprint; each variable has
an extra dimension represented by the number of levels or intermediate levels,
corresponding to the altitude. This has an implication on data ordering, as each level is
contiguous in the file, so a transpose is necessary right after reading. This change also
required re-writing many of the ParGAL algorithms already implemented.

We have also enabled MOAB to better represent structured periodic grids in parallel and
serial.

One of the unique features of ParGAL through MOAB is the ability to represent the
model output data on the same discretization as was used in the model while computing
the solution. In our initial prototype, we were treating all variables as if they were on the
nodes of a computational grid. In reality, most quantities are computed on cell centers.
We made substantial changes to the NetCDF reader in MOAB to distinguish between
different grid formats so that variables were read into MOAB and associated with the
appropriate mesh geometrical entity, for example temperature at the element center rather
than an element node. Since this information is not in the NetCDF file, we added logic to

the MOAB NetCDF reader to recognize which dycore was used (Eul, FV or SE) and
place values on the appropriate entities. Similar logic will have to be added for other grid
types while we develop a more general solution.

Other data in the NetCDF file is also now read in the MOAB. Global attributes in the file
are saved as sparse tags on the local mesh set on each processor. Variable data are saved
as dense tags associated to the nodes and elements in the mesh. Direct access to the
memory occupied by the data is provided for dense tags, so the client can avoid
expensive copy after the data has been read from disk.

Additional changes in the specialized MOAB NetCDF reader were made for structured
and unstructured meshes.
1) structured mesh

− Improve the performance of structured mesh interface, for mesh and variable
reading in parallel;

− specialize sharing and ghosting for structured grids.
− Allow and identify periodic boundaries in the data automatically

2) unstructured mesh CAM-SE (HOMME grids)

− implement trivial partition, in which each processor gets a balanced number of
quad elements, ordered by their global index.

− resolve sharing and ghosting using regular MOAB parallel communicator
functions, for unstructured meshes

− read nodal variables using asynchronous pnetcdf calls, on each processor, for each
variable. Each processor reads fragments of the data corresponding to the local
represented nodes, only.

− introduce a global mesh set on the root processor, that can be used to gather a
variable (tag) from domain-decomposed meshes onto the root;

− introduce the spectral mesh tool

Near Term development.

We plant to complete the implementation of spectral mesh tool to allow for a direct use of
Intrepid spectral element functions and methods for various algorithms. For structured
meshes, allow certain data to be associated with edges. We will work with CAM
developers to eliminate the need for the extra connectivity array for HOMME grids; the
connectivity could be included in the regular data file. We will extend the reader to other
climate specific meshes, like MPAS grids. Finally we will develop a dedicated
partitioner for better balancing for unstructured meshes and extend the ghosting
capability.

Intrepid/ParGAL	
 development	

The work of Sandia’s team during this reporting period focused on the development,
testing, and implementation of parallel algorithms to perform operations currently

handled by NCL spherical harmonic functions. The ParGAL implementation uses the
finite element method to compute derivatives for quantities such as vorticity and
divergence and to solve simple partial differential equations for streamfunction and
velocity potential.
Initial implementation of the ParGAL functions provided a capability to compute these
quantities on quadrilateral elements for given nodal velocity components. As mentioned
above, additions to the MOAB netcdf file reader provided the ability to distinguish
between different grid formats so that variables were read into MOAB and associated
with the appropriate mesh geometrical entity. This led to the need for alternative
formulations of the algorithms for velocity components given at locations other than
element nodes that we implemented in the past year.

Specific grid-based formulations have been developed for the three CAM grids ParGAL
and MOAB can currently read. Output for CAM-Eul and CAM-FV contain velocity
components at the cell centers and for CAM-SE the velocity components are located on
the cell nodes. Progress on algorithms for each of the grids is given in more detail in the
sections that follow. In addition, Table 1 provides a description of the NCL spherical
harmonic functions that have been adapted along with the status of the parallel algorithm
development.

Table 1: Status of development and implementation of parallel algorithms for the NCL spherical
harmonic functions.
NCL Function Description Status
uv2dv(F,f,G,g) Divergence from velocity field In ParGAL for CAM-FV, CAM-

Eul and CAM-SE grids
uv2vr(F,f,G,g) Vorticity from velocity field In ParGAL for CAM-FV, CAM-

Eul and CAM-SE grids
uv2vrdv(F,f,G,g) Vorticity and divergence from

velocity field
In ParGAL for CAM-FV, CAM-
Eul and CAM-SE grids

uv2sfvp(F,f,G,f) Streamfunction and velocity potential
from velocity field

Implementation developed for
nodal quantities, structured grids

sfvp2uv(f,g) Wind components from
streamfunction and velocity potential

Implementation developed for
nodal quantities, structured grids

Vorticity/divergence for CAM-Eul and CAM-FV Grids

Algorithms were developed and tested to compute vorticity and divergence on structured
Gaussian or fixed latitude/longitude grids given cell-centered velocity components. The
vorticity and divergence are computed with the finite element method, which provides a
method to handle unstructured meshes and is straightforward to parallelize. A formal L2
projection is used to build a linear system that is solved for the cell-centered vorticity or
divergence values. The algorithm leverages several packages from the Trilinos project
including Intrepid for element basis functions and quadrature rules, Epetra for distributed
linear algebra tools, and AztecOO and ML for solving and preconditioning the linear
system.

For testing purposes a velocity field derived from a streamfunction that is a wavenumber
four Rossby-Haurwitz wave and a low-order spherical harmonic function for the velocity
potential has been used. Given this velocity field an exact expression for the vorticity
and divergence can be derived and errors between the exact solution and our finite
element approach calculated.

Convergence rates for the vorticity and divergence algorithms were determined by
computing the Rossby wave solution on two sets of grids. The first set includes three
grids in a CAM-FV configuration that are equispaced and have resolutions of
appoximately 4 degrees (48x72), 2 degrees (96x144), and 1 degree (192x288). The
second set consists of the three Gaussian grids T31, T42, and T85 with resolutions of
48x96, 64x128 and 128x256, respectively. Results from the convergence test are given in
Tables 2 and 3. Plots of the vorticity and divergence for the test case from the

Table 2: Errors and convergence rates in the ParGAL computation of vorticity for the Rossby
wave test case.
Mesh Size L2 error Rate L1 error Rate
4° FV 48x72 4.45x10-3 2.18x10-3
2° FV 96x144 1.35x10-3 1.72 5.51x10-4 1.98
1° FV 192x288 4.47×10-4 1.66 1.42x10-4 1.97
T31 48x96 1.58x10-3 1.26x10-3
T42 64x128 9.34x10-4 1.83 7.36x10-4 1.87
T85 128x256 2.51x10-4 1.84 1.98x10-4 1.89

Table 3: Errors and convergence rates in the ParGAL computation of divergence for the Rossby
wave test case.
Mesh Size L2 error Rate L1 error Rate
4° FV 48x72 1.11x10-2 5.37x10-3
2° FV 96x144 3.37x10-3 1.72 1.33x10-4 1.99
1° FV 192x288 1.12×10-3 1.65 3.45x10-5 1.97
T31 48x96 7.77x10-3 4.30x10-3
T42 64x128 4.87x10-3 1.62 2.51x10-4 1.87
T85 128x256 1.71x10-3 1.54 6.67x10-4 1.90

ParGAL finite element implementation and the standard NCL spherical harmonic
implementation for the T42 grid are shown in Figure 7.

Figure 7. Vorticity(a) and divergence(b) from the ParGAL algorithm and vorticity(c) and
divergence(d) from the NCL spherical harmonic algorithm on the T42 CAM-Eul grid for
the Rossby wave test case.

Streamfunction and Velocity Potential for CAM-Eul and CAM-FV Grids.

Algorithms were developed to compute the streamfunction and velocity potential given
nodal velocities on structured Gaussian or fixed grids. Work continues on implementing
the algorithms for cell-centered velocities. The streamfunction and velocity potential are
the solutions of the Poisson equations. The finite element method is used to solve these
equations using a weak formulation that depends explicitly on the velocity components
rather than the divergence and vorticity.

To test the algorithm the streamfunction and velocity potential were computed for the
Rossby wave velocity field on grids from the two mesh sets described in the previous
section. Convergence rates are shown in Tables 4 and 5. Plots of the streamfunction and
velocity potential for the test case from the ParGAL finite element implementation and
the standard NCL spherical harmonic implementation for the T42 grid are shown in
Figure 8.

Vorticity/divergence for CAM-SE Grid.

Algorithms were developed to compute vorticity and divergence on the cubed-sphere grid

Figure 8: Streamfunction(a) and velocity potential(b) from the ParGAL algorithm and
streamfunction(c) and velocity potential(d) from the NCL spherical harmonic algorithm
on the T42 CAM-Eul grid for the Rossby wave test case.

Table 4: Errors and convergence rates in the ParGAL computation of streamfunction for the
Rossby wave test case.
Mesh Size L2 error Rate L1 error Rate
4° FV 48x72 1.49x10-3 1.31x10-3
2° FV 96x144 3.79x10-4 1.97 3.33x10-4 1.98
1° FV 192x288 9.56×10-5 1.98 8.42x10-5 1.98
T31 48x96 1.16x10-2 7.52x10-3
T42 64x128 7.49x10-3 1.52 4.47x10-3 1.81
T85 128x256 2.61x10-3 1.52 1.26x10-3 1.82

Table 5: Errors and convergence rates in the ParGAL computation of velocity potential for the
Rossby wave test case.
Mesh Size L2 error Rate L1 error Rate
4° FV 48x72 8.63x10-4 8.44x10-4
2° FV 96x144 2.09x10-4 2.06 2.02x10-4 2.06
1° FV 192x288 5.17×10-5 2.04 4.97x10-5 2.04
T31 48x96 7.82x10-4 7.72x10-4
T42 64x128 4.32x10-4 2.06 4.26x10-4 2.07
T85 128x256 1.06x10-4 2.04 1.04x10-4 2.04

(a) (b)

(c) (d)

used for the HOMME spectral element model. In the initial implementation of the
vorticity and divergence algorithms the nodes of the CAM-SE grid are separated into
individual quadrilaterals rather than into high-

Figure 9: Vorticity (a) and divergence (b) computed on a CAM-SE grid for the Rossby
wave test case using ParGAL.

order degrees-of-freedom for the coarse spectral elements. Therefore, bilinear basis
functions are used to compute the vorticity and divergence. Future implementations will
treat the CAM-SE grid as composed of spectral elements and will use the correct spectral
element basis functions to compute these quantities. Plots of vorticity and divergence for
the Rossby wave test case and computed for the eight coarse element per face CAM-SE
grid (np=4,ne=8) are shown in Figure 9. Note that no comparison with NCL is provided
since the NCL algorithm is currently restricted to fixed and Gaussian spherical grids.

ParNCL	
 Development	
 and	
 Release	

ParNCL (Parallel NCL) is a parallel version of the NCL interpreter that performs climate
data analysis in parallel using ParGAL (and Intrepid) and MOAB.

At the end of our first progress report, we had a prototype version of ParNCL working.
We released a beta version (1.0.0b1) to the community on Dec 7th, 2012. Several new
documents were added and old documents modified in the ParVis wiki related to
ParNCL. The wiki now contains a set of NCL scripts that work with both NCL and
ParNCL for users to try out. Detailed instructions for building ParNCL were developed
for users who want to build their own version.

ParNCL currently supports the same grids as ParGAL, CAM Eulerian Spectral grid,
CAM Finite Volume grid and CAM HOMME grid. We will next be adding support for
MPAS-ocean and POP grids.

Current ParNCL features
Other features of our beta version of ParNCL developed over the past year include:

Distributed Multidimensional Data Subscripting

(a) (b)

ParNCL supports selection of ranges of data from the multidimensional climate data read
from a NetCDF file. Users can currently perform the following types of selections on
data read from CAM Eulerian Spectral and CAM Finite Volume grids.

 Range subscripting

Users can provide a beginning and end index of a multidimensional variable
followed optionally by a stride value to select a data range.

 Vector subscripting
Users can explicitly provide the indices of the selection of a multidimensional
variable in a vector to get the data slice.

Analysis Operations

 ParGAL Data Analysis functions

Users can perform data analysis on data read from a climate data file using NCL
functions that have a corresponding ParGAL data analysis function. An example
would be computing the average of a variable’s given dimension(s) at all other
dimensions using the NCL dim_avg_n() function.

 Simple Math Functions
Users can perform simple math operations on data using NCL functions that are
supported by ParNCL. ParNCL interacts with MOAB and ParGAL to read data
from NetCDF files, performs data analysis on the data and stores the result back
to the MOAB database. An example of this type of operation would be computing
sine of all the values in a multidimensional array using the NCL sin() function.

 Simple Math operations
Apart from using the built-in math functions in NCL, users can perform simple
math operations like scaling, addition, subtraction of multidimensional data in
ParNCL.

 Viewing and Plotting
ParNCL supports NCL functions to view data (and metadata) by printing it to
stdout. It also supports all NCL graphics functions. The NCL graphics functions
execute serially and any distributed multidimensional data passed to these
functions is gathered by the interpreter before executing the function.

 New Operations
ParNCL supports some new operations that were not supported by NCL like
calculating vorticity and divergence on a HOMME grid. We have added two new
functions uv2vrA(), to calculate vorticity from wind components and uv2dvA() to
calculate divergence from wind components in ParNCL.

The table below gives a summary of the NCL functions currently supported in ParNCL.
For more information on these functions please refer to the NCL documentation
(http://www.ncl.ucar.edu/Document/index.shtml).

NCL function name Climate Data Grids Supported

CAM Eulerian
Spectral grid

CAM Finite
Volume grid

CAM HOMME
grid

addfile YES YES YES
addfiles YES YES YES

dim_avg_n YES YES YES
dim_max_n YES YES YES
dim_min_n YES YES YES

dimsizes YES YES YES
max YES YES YES
min YES YES YES
print YES YES YES

printVarSummary YES YES YES
systemfunc YES YES YES

uv2vrA YES YES YES
uv2dvA YES YES YES

abs YES YES YES
acos YES YES YES
asin YES YES YES
atan YES YES YES
atan2 YES YES YES
cos YES YES YES
exp YES YES YES
fabs YES YES YES
floor YES YES YES
log YES YES YES

log10 YES YES YES
sin YES YES YES
sinh YES YES YES
ceil YES YES YES

Visualization functions YES YES YES

ParNCL Software Engineering:

We also modified the NCL test suite to incorporate ParNCL tests. The test suite was
modified to run the NCL scripts using ParNCL and verify the results by running the same
NCL script using the serial version of NCL.

 We also added some new features to the NCL test suite to,

 Allow users to customize the test suite at runtime via a testlist file (Only the tests

specified in the testlist file is executed)
 Allow users to specify a query path to the test suite to locate the NCL interpreter

 Specify ParNCL-specific information like number of processors to execute the job,
the job launcher etc.

Near Term Development.

The most immediate development needs for ParNCL are to support more climate data
grids and implement data-parallel versions of more NCL analysis functions.

We also plan to add NCL data creation functions like new(), fspan() to allow users to
create distributed data. We also need to provide support for coordinate subscripting
(specify coordinates to subscript data) and named subscripting (specify name of
dimensions when subscripting data) in future. Support for variable subscripting will also
be extended to CAM HOMME grids.

Data	
 Compression	
 for	
 Ultra-­‐Large	
 data	
 sets	

The move toward high-resolution climate models creates bottlenecks for model output
and analysis input that cannot be solved by increasing the scale of current parallel file
systems. Additionally, the total volume of data generated by the models will quickly
exceed our capacity to store the data during simulations or for post analysis. ParVis and
the PNNL team are investigating algorithms, based on information theory, that work
effectively on floating point climate model outputs. To ease adoption, we are integrating
our compression capabilities into the Parallel NetCDF library, which is currently used by
existing high-resolution climate codes such as the CESM and GCRM.

Our compression schemes contain two phases: the first phase predicts the next value
based on the previous values, the second phase encoded the next value with entropy-
based encoding. In the first year, we compared our scheme against other schemes,
evaluated various design choices, implemented a prototype and gathered some
preliminary results. In the past 15 months, we have made a more detailed analysis of our
compression technique.

Since some of our prediction algorithms can predict the exponent part of floating point
value and the most significant bit of the significant part of the float point numbers well
but not less significant bits, our lossy compression can achieve good compression ratios.
Preliminary results, using Matlab and R, show that we can reduce the data by an order of
magnitude when the error bound is 10%. Table 6 shows some results for different data
using different methods. A more complete experiment and analysis is currently in
progress.

 Nearby value

+ run length
encoding

Nearby value
+ prefix
encoding

Nearby value
+ run length
encoding with
10% error
bound

Nearby value +
prefix encoding
with 10% error
bound

Gzip	

CCSM Temperature 0.513 0.438 0.371 0.126 0.723	

CCSM Fractional Cloud
Cover

0.437 0.330 0.236 0.082 0.402	

CCSM Q Tendency 0.399 0.285 0.218 0.066 0.338	

CCSM Cloud Ice 0.317 0.194 0.222 0.041 0.320	

Table 6 Compression ratios for different variables from two different data sets using different compression algorithms.
The first three are all lossless and the forth column represents a lossy compression.

Implementation in PnetCDF

Though compression can be implemented at various points of the I/O stack, in the past
year we began implementation within the Parallel NetCDF library. The flexibility of the
PNetCDF interface creates a very challenging environment for optimizing compression at
the Parallel NetCDF layer. However, we note that climate models typically follow a
pattern of appending data, writing without strides, and using collective I/O and will use
this information to create a targeted implementation for high-resolution model outputs.
In the future, our implementation can be generalized to more usage patterns. Output by
PNetCDF is an option in the PIO library used by CESM and used by ParGAL/ParNCL
for input and this work will ultimately allow us to keep data compressed throughout the
climate model workflow.

Preliminary Performance Results

For our initial performance tests, we use 28 km data (27 layers) temperature data from the
GCRM. We developed a simple Parallel NetCDF benchmark to test reading and writing
GCRM data and to examine the performance costs in depth. Our test environment is a
linux cluster with fat memory nodes.

Figure 10 (left) shows the read performance. As we can see from the graph, when we
only have one MPI process and use the luster parallel file system, the I/O is not the major
bottleneck. Decompression causes computation overhead and hence the read compressed
version is slower. Note that no optimizations have yet been applied. When we use parallel
I/O and have many MPI processes to speed up data retrieval, reading compressed data
outperform uncompressed data. For writing, we observe the similar behavior (Figure 10
right).

Figure 10: Total read and write performance. The y axis is time in seconds. The x axis shows
varying numbers of nodes and processors counts. In all cases, the lustre striping count was set to
eight.

Our results to date are promising even without optimization. However, there are many
optimizations that need to be evaluated ranging from: choosing an algorithm that best fits
a variable and its mesh by examining the header information, simple compiler
optimizations, data parallel instruction, restructure of code to reduce branch
mispredictions and minimize cache misses and chunking of pipelining.

For correctness testing, we have built the Pagoda parallel analysis library
(https://svn.pnl.gov/gcrm/wiki/Pagoda) with our compression enabled version of Parallel
NetCDF and verified that operators that slice in time, horizontal, and vertical dimensions
produce results that when decompressed, exactly match the original data.

3D	
 visualization	
 and	
 analysis	

ParVis work on advanced visualization techniques for the past 15 months focused on
geodesic grids. Geodesic grids are commonly used in climate modeling. Visualization of

large geodesic grid data imposes some
unique challenges. First, the data structure
of geodesic grids is typically constructed
using a recursive refinement procedure on
a spherical surface, thus presenting very
different geometry properties from other
existing unstructured grids. Second,
commodity graphics hardware is designed
for rendering with trilinear interpolation
of planar data. The spherical geodesic

grid data is not organized in such manner, so it cannot be rendered directly by the
graphics hardware. Third, even though it is possible to transform geodesic grids into
more generally supported grids, such as tetrahedral grids, for visualization, this approach
often incurs significant computing and storage overhead, and can become infeasible to
process large data from current petascale and future exascale simulations.

The UC Davis team has developed an interactive ray-casting rendering method for
visualizing hexagonal grid volume data without first decomposing each hexagonal
element into multiple tetrahedral ones. Highly efficient, high quality rendering is
achieved with an analytic solution for the interpolation of scalar values with adaptive
sampling along a ray within each hexagonal grid cell. A gradient estimation method for
rendering hexagonal grid volume data is introduced to achieve smooth shading and
highlight to provide important cues for shape and depth. To harnessing the power of
GPUs, we organize geodesic grid data structure in GPU memory to best match the
original storage format and minimize the data transformation overhead. Table 7 shows
the information of the GCRM data set used in our experimental study on a desktop

Table 7 The GCRM data sets

computer with dual Intel Xeon CPUs, 24GB memory and dual NVIDIA GTX 580 GPUs.
The rendering performance results are shown in Table 8.

Table 8: Rendering performance for the low resolution (left) and high resolution GCRM

datasets

The new

rendering method can generate high quality visualization of full resolution geodesic grid
data, and allows scientists to see greater details from their large climate simulations at
interactive rates. Figure 11 compares our method with the conventional tetrahedron based
approach and Mean Value Interpolation approach. In addition to superior rendering
quality, our method also achieves substantially higher efficiency over the tetrahedron
based metohd and the mean value interpolation method, as shown in Figure 12.

Figure 11: Rendering quality
comparison of our approach with the
conventional tetrahedron based
method and mean value
interpolation (MVI) in a close-up
views. The images are rendering of
high-resolution vorticity data.

Figure 12: Performance measures
and comparison with the
conventional tetrahedron based
method and mean value

interpolation approach.

Finally, Figure 13 displays mesh rendering, volume rendering of global atmosphere
vorticity field with geophysical information superimposed, and a close-up view of a
region of interest in the global atmosphere.

 Figure 13: Results from visualization

Project	
 Management	

Project	
 organization	
 and	
 resources	

The PI is responsible for coordinating effort among the various tasks and insuring
progress is made on deliverables. The project is spread over 5 institutions and a “lab
lead” at each is responsible for coordination of the ParVis members at their respective
institutions. The leads are: Robert Jacob (ANL), Pavel Bochev (Sandia), Karen
Schuchardt (PNNL), Don Middleton (NCAR) and Kwan-Liu Ma (UC-Davis).

All team members participate in biweekly conference calls devoted to updates and
discussion of near-term development. The ANL web and audio service provider,
AdobeConnect, is used to facilitate sharing presentations and recording notes from the
call. Two mailing lists hosted by Argonne are also used by the team: one for general
discussion (parvis) and another for development details and code check-in messages
(parvis-dev).

We have biannual all-hands meetings. Our fourth meeting was held March 22-23, 2012,
at Argonne National Laboratory and our fifth meeting was October 25-26, 2012, at
NCAR.

The PI keeps the ParVis advisory panel (David Randall (CSU) and William Gustafson
(PNNL), Gokhan Danabasoglu (NCAR), Cecilia Bitz (University of Washington) and
David Lawrence (NCAR)) advised of progress and solicits feedback from them.

The MCS division at Argonne provides resources for software development (svn
repository, bug tracking and test/development machines). We have also obtained an
allocation of computer time on Argonne’s Fusion cluster for testing on tens to hundreds
of processors. ParVis developers have been given access to the Eureka analysis/viz
cluster at the Argonne Leadership Computing Facility through the INCITE project led by
Warren Washington (time on Eureka is not charged to the project)
	

Communication	
 with	
 the	
 broader	
 community

We maintain a website (http://trac.mcs.anl.gov/projects/parvis) to both host software we
make available for the community and provide notes and material for ParVis team
members. Most of the content is world readable except for the repository and the ticket
system. ParGAL is open source and instructions are available to download directly from
the repository. We also have tarballs available of the ParNCL source and binaries for
some systems. We also maintain a one-way mailing list (parvis-ann) that anyone can
subscribe to for announcements about ParVis and ParVis software.

The ParVis PI along with the PI’s of the other visualization projects submitted a
successful session proposal for the Fall 2011 AGU (Dec, 2011) meeting that informed the
community about our efforts. The ParVis project gave a talk at the oral session and
presented a poster on the task-parallelism scripts at the poster session. We updated the

CESM community about ParVis with both a poster and a presentation at the 17th annual
CESM Workshop in June, 2012. We also gave a tutorial on how to run the task-parallel
versions of the diagnostic scripts at the workshop that was attended by 35-40 people. The
slides from the tutorial are available online. A poster about ParVis was accepted and
presented at SC12 in November, 2012. Finally, our AGU session was repeated at the Fall
2012 AGU (Dec, 2012) meeting. Members of the ParVis team presented a talk on Swift
and poster on ParVis was also given. The poster presentation included the announcement
of the release of the beta version of ParNCL.

To support our users, we have set up a parvis-users mailing list to field questions. We are
also maintaining installed versions of ParNCL and the Swift diagnostics on DOE analysis
machines (such as lens at ORNL and eureka at ANL).

Interaction	
 with	
 other	
 projects	

We have continued to have discussions with the other LAB10-05 projects on how to
collaborate.

Members of the BER “Ultra High Resolution Global Climate Simulation” project (PI:
Jim Hack, ORNL) have contacted us about using the Swift-based AMWG diagnostics to
help analyze their data. We will be working with them to develop diagnostics that are
both task parallel and operate directly on the CAM-SE grid. We have examined new
diagnostic scripts created by the “Climate Science for a Sustainable Energy Future”
project to plot precipitation cycles to see if they can benefit from task parallelism.

