202 | | A conceptually straightforward approach to exploring the space of the parameter values is via an exhaustive search procedure. However, this exhaustive approach often becomes infeasible because the size of the search space can be exponentially large. Hence, a proper search heuristic becomes a critical component of an empirical tuning system. In addition to an ''exhaustive search'' and a ''random search'', two effective and practical search heuristic strategies have been developed and integrated into the Orio’s search engine. These heuristics include the ''Nelder-Mead Simplex'' method and ''Simulated Annealing'' method. The exhaustive approach is selected as the default space exploration method of Orio. However, Orio user can indicate his preferred search strategy in the tuning specifications, as exemplified in the ''search'' definition below. |
| 202 | A conceptually straightforward approach to exploring the space of the parameter values is via an exhaustive search procedure. However, this exhaustive approach often becomes infeasible because the size of the search space can be exponentially large. Hence, a proper search heuristic becomes a critical component of an empirical tuning system. In addition to an ''exhaustive search'' and a ''random search'', two effective and practical search heuristic strategies have been developed and integrated into the Orio’s search engine. These heuristics include the ''Nelder-Mead Simplex'' method and ''Simulated Annealing'' method. The exhaustive approach is selected as the default space exploration method of Orio; however, Orio user can indicate his preferred search strategy in the tuning specifications, for instance, using the following ''search'' definition. |